Image: C. crescentus
Yves Brun / Indiana University
The bacterium known as Caulobacter crescentus affixes itself to solid objects with its stalk and holdfast. Here, two "stalk" cells, at the bottom, spawn two mobile "swarmer" clones of themselves, at top.
updated 4/19/2006 1:32:04 PM ET 2006-04-19T17:32:04

A common bacteria that clings to the inside of water pipes stays in place with the strongest glue known to exist in nature, scientists say.

The researchers found that the bacteria Caulobacter crescentus can withstand a force equivalent to five tons per square inch — the pressure exerted by three or four cars balanced atop a quarter — before it is swept from its moorings.

Yves Brun, a biologist at Indiana University who is a co-author of the research, said the super adhesive the bacteria produces could theoretically be mass-produced for engineering and medical purposes. One of the applications could be a biodegradable glue to replace sutures and staples in surgery.

"The challenge will be to produce large quantities of this glue without it sticking to everything that is used to produce it," he told The Herald-Times in Bloomington.

The findings appear in the April 11 issue of the Proceedings of the National Academy of Science. Brun collaborated in the research with Jay Tang, a former Indiana University physicist who now works at Brown University.

Brun has been working with C. crescentus — a harmless and widely studied bacterium that lives in rivers, streams and water pipes — since 1990 as part of his work to understand genetic processes involved in producing cells.

In their work, the team discovered that C. crescentus attaches itself to surfaces with a long, slender stalk tipped with chains of sugar molecules that are the source of its tenacity.

That substance is the strongest glue known to occur in nature and is three times as strong as commercial "super glue" products, Brun said.

Because it works under water, even in salty water, he said that suggests it could be used as a surgical adhesive, in joint replacement surgery and in dental procedures.

But figuring out how to do it will require solving scientific and engineering problems of surface chemistry and manufacturing processes.

Indiana University engineer L. Ben Freund wrote the model used to analyze the bacteria's adhesive abilities. Peter Tsang and Guanglai Li of Brown University performed experiments and analyzed data.

Funding came from the National Science Foundation and the National Institutes of Health.

Copyright 2006 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Discuss:

Discussion comments

,

Most active discussions

  1. votes comments
  2. votes comments
  3. votes comments
  4. votes comments