Randy Montoya  /  Sandia
Sandia's Mark Boslough is a leading expert on incoming asteroids, big and small.
By
Space.com
updated 10/11/2010 11:37:18 AM ET 2010-10-11T15:37:18

Put aside the vision of Bruce Willis wrestling with huge space rocks threatening to doom Earth "Armageddon"-style. It turns out that people should be more worried about smaller space rocks that explode in our atmosphere.

While smaller than Earth-busting asteroids, these "airbursters" like the space rock that exploded in 1908 high over Tunguska, Siberia are more immediate threats, scientists say. They can cause localized destruction and may intrude in our airspace with little warning time.

When an airbursting asteroid, called a bolide, exploded over an island region of Indonesia late last year, it rocked the residents' world with an estimated energy release of about 50 kilotons, equal to some 110,000 pounds of TNT.

Such objects are expected to impact the Earth on average every two to 12 years.

Physics of airbursts

The risks of exploding asteroids and the need to keep watch for hazardous near-Earth objects took center stage at September's Space 2010 conference in California, sponsored by the American Institute of Aeronautics and Astronautics.

"We used to think that the only real threat was from impacts that hit the ground and that the atmosphere would protect us from the small ones, said physicist Mark Boslough of Sandia National Laboratories in Albuquerque, N.M. We never really thought about the physics of airbursts. There hasn't been that much research."

Given his modeling of airbursts, Boslough pointed out that smaller NEOs detonating in the atmosphere release intense heat and create very high blasts of wind that can reach the ground.

"So yes, you do have to sweat the small stuff," Boslough told SPACE.com.

Also, a space rock big enough to make it deeper into the Earths atmosphere before it explodes can result in a sizzling jet of gases that incinerates anything volatile on the ground. Vegetation would be vaporized. Rocks would melt to form glass in short, a hellish explosion.

A similar situation is thought to have occurred in the Libyan desert some 30 million years ago, Boslough said. The region was strewn with surface material fused into glass. Large deposits of shattered glass were discovered where there should be none.

  1. Most popular

"Just statistically, its almost certain that the next destructive impact will be an airburst," Boslough said.

More and more of the big NEOs are being found, he said, so the statistical probability of Earth getting slam-dunked by a large object is going down.

"But there are many, many more small ones," Boslough said, advocating a priority on spotting less hefty, imminent impactors. "If big dollars are to be spent, I think they should be spent on more telescopes."

If a small NEO were discovered, say, two weeks in advance, "we have no choice but to take the hit," Boslough said.

In terms of planetary defense and mitigation efforts, Boslough advised focusing more attention on small airbursting objects, with "mitigation being a form of civil defense."

Tunguska fallout

The classic asteroid event occurred 102 years ago in Tunguska, Boslough said. It involved an object that broke up in a cascading way, leading to a rapidly expanding fireball and subsequent blast wave.

"That blast wave hit the ground, and the wind associated with it was high enough to actually blow over trees," he said.

The downed trees covered at least 2,000 square kilometers (more than 770 square miles) with no crater associated with the explosion located.

Boslough said that, in his opinion, the Tunguska asteroid was probably a 40-meter (131-foot) object. "Tunguska wasnt the lower threshold. You could imagine something 30 meters (98 feet) across," he said, and in that case, it would explode with a little bit less energy and a little higher in the atmosphere.

"But if you just happened to be directly under it, yes, it could be fatal," Boslough added.

Boslough stressed that the probability of a Tunguska is on the order of once every thousand years. But the next object that has the chance of killing somebody is almost certainly going to be an airburst like Tunguska maybe bigger, maybe smaller, he said.

Continuing threat

Other panel members of the AIAA session, while highlighting varying aspects of NEO research, concurred about the troublesome issue of smaller incoming objects.

"We talk about the big ones all the time, and were getting rid of the threat for those," said Bill Ailor, director of the Center for Orbital and Reentry Debris Studies.

"But the small ones are going to be a continuing threat. And the challenge is what do we do about that," said Ailor, also a leading planetary defense expert at The Aerospace Corp. in El Segundo, Calif. "We might not see them in time."

Similar in view was Don Yeomans, manager of NASAs Near-Earth Object Program Office at the Jet Propulsion Laboratory in Pasadena, Calif.

"Were doing very well with detecting the large ones. But weve got a long way to go for the small ones," Yeomans added.

His message regarding planetary defense:

"We need to find them before they find us."

Leonard David has been reporting on the space industry for more than five decades. He is past editor-in-chief of the National Space Society's Ad Astra and Space World magazines and has written for SPACE.com since 1999.

© 2013 Space.com. All rights reserved.

Photos: Month in Space: January 2014

loading photos...
  1. Southern stargazing

    Stars, galaxies and nebulas dot the skies over the European Southern Observatory's La Silla Paranal Observatory in Chile, in a picture released on Jan. 7. This image also shows three of the four movable units that feed light into the Very Large Telescope Interferometer, the world's most advanced optical instrument. Combining to form one larger telescope, they are greater than the sum of their parts: They reveal details that would otherwise be visible only through a telescope as large as the distance between them. (Y. Beletsky / ESO) Back to slideshow navigation
  2. A balloon's view

    Cameras captured the Grandville High School RoboDawgs' balloon floating through Earth's upper atmosphere during its ascent on Dec. 28, 2013. The Grandville RoboDawgs’ first winter balloon launch reached an estimated altitude of 130,000 feet, or about 25 miles, according to coaches Mike Evele and Doug Hepfer. It skyrocketed past the team’s previous 100,000-feet record set in June. The RoboDawgs started with just one robotics team in 1998, but they've grown to support more than 30 teams at public schools in Grandville, Mich. (Kyle Moroney / AP) Back to slideshow navigation
  3. Spacemen at work

    Russian cosmonauts Oleg Kotov, right, and Sergey Ryazanskiy perform maintenance on the International Space Station on Jan. 27. During the six-hour, eight-minute spacewalk, Kotov and Ryazanskiy completed the installation of a pair of high-fidelity cameras that experienced connectivity issues during a Dec. 27 spacewalk. The cosmonauts also retrieved scientific gear outside the station's Russian segment. (NASA) Back to slideshow navigation
  4. Special delivery

    The International Space Station's Canadian-built robotic arm moves toward Orbital Sciences Corp.'s Cygnus autonomous cargo craft as it approaches the station for a Jan. 12 delivery. The mountains below are the southwestern Alps. (NASA) Back to slideshow navigation
  5. Accidental art

    A piece of art? A time-lapse photo? A flickering light show? At first glance, this image looks nothing like the images we're used to seeing from the Hubble Space Telescope. But it's a genuine Hubble frame that was released on Jan. 27. Hubble's team suspects that the telescope's Fine Guidance System locked onto a bad guide star, potentially a double star or binary. This caused an error in the tracking system, resulting in a remarkable picture of brightly colored stellar streaks. The prominent red streaks are from stars in the globular cluster NGC 288. (NASA / ESA) Back to slideshow navigation
  6. Supersonic test flight

    A camera looking back over Virgin Galactic's SpaceShipTwo's fuselage shows the rocket burn with a Mojave Desert vista in the background during a test flight of the rocket plane on Jan. 10. Cameras were mounted on the exterior of SpaceShipTwo as well as its carrier airplane, WhiteKnightTwo, to monitor the rocket engine's performance. The test was aimed at setting the stage for honest-to-goodness flights into outer space later this year, and eventual commercial space tours.

    More about SpaceShipTwo on PhotoBlog (Virgin Galactic) Back to slideshow navigation
  7. Red lagoon

    The VLT Survey Telescope at the European Southern Observatory's Paranal Observatory in Chile captured this richly detailed new image of the Lagoon Nebula, released on Jan. 22. This giant cloud of gas and dust is creating intensely bright young stars, and is home to young stellar clusters. This image is a tiny part of just one of 11 public surveys of the sky now in progress using ESO telescopes. (ESO/VPHAS team) Back to slideshow navigation
  8. Fire on the mountain

    This image provided by NASA shows a satellite view of smoke from the Colby Fire, taken by the Multi-angle Imaging SpectroRadiometer aboard NASA's Terra spacecraft as it passed over Southern California on Jan. 16. The fire burned more than 1,863 acres and forced the evacuation of 3,700 people. (NASA via AP) Back to slideshow navigation
  9. Where stars are born

    An image captured by NASA's Spitzer Space Telescope shows the Orion Nebula, an immense stellar nursery some 1,500 light-years away. This false-color infrared view, released on Jan. 15, spans about 40 light-years across the region. The brightest portion of the nebula is centered on Orion's young, massive, hot stars, known as the Trapezium Cluster. But Spitzer also can detect stars still in the process of formation, seen here in red hues. (NASA / JPL-Caltech) Back to slideshow navigation
  10. Cygnus takes flight

    Orbital Sciences Corp.'s Antares rocket rises from NASA's Wallops Flight Facility on Wallops Island, Va, on Jan. 9. The rocket sent Orbital's Cygnus cargo capsule on its first official resupply mission to the International Space Station. (Chris Perry / NASA) Back to slideshow navigation
  11. A long, long time ago...

    This long-exposure picture from the Hubble Space Telescope, released Jan. 8, is the deepest image ever made of any cluster of galaxies. The cluster known as Abell 2744 appears in the foreground. It contains several hundred galaxies as they looked 3.5 billion years ago. Abell 2744 acts as a gravitational lens to warp space, brightening and magnifying images of nearly 3,000 distant background galaxies. The more distant galaxies appear as they did more than 12 billion years ago, not long after the Big Bang. (NASA / NASA via AFP - Getty Images) Back to slideshow navigation
  12. Frosty halo

    Sun dogs are bright spots that appear in the sky around the sun when light is refracted through ice crystals in the atmosphere. These sun dogs appeared on Jan. 5 amid brutally cold temperatures along Highway 83, north of Bismarck, N.D. The temperature was about 22 degrees below zero Fahrenheit, with a 50-below-zero wind chill.

    Slideshow: The Year in Space (Brian Peterson / The Bismarck Tribune via AP) Back to slideshow navigation
  1. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  2. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  3. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  4. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

Discuss:

Discussion comments

,

Most active discussions

  1. votes comments
  2. votes comments
  3. votes comments
  4. votes comments