updated 10/27/2010 4:09:10 PM ET 2010-10-27T20:09:10

In a new finding that could have game-changing effects if borne out, two astrophysicists think they've finally tracked down the elusive signature of dark matter.

This invisible substance is thought to make up much of the universe but scientists have little idea what it is. They can only infer the existence of dark matter by measuring its gravitational tug on the normal matter that they can see.

Now, after sifting through observations of the center of our Milky Way galaxy, two researchers think they've found evidence of the annihilation of dark matter particles in powerful explosions.

"Nothing we tried besides dark matter came anywhere close to being able to accommodate the features of the observation," Dan Hooper, of the Fermi National Accelerator Laboratory in Batavia, Ill., and the University of Chicago, told "It's always hard to be sure there isn't something you just haven't thought of. But I've talked to a lot of experts and so far I haven't heard anything that was a plausible alternative."

Hooper conducted the analysis with Lisa Goodenough, a graduate student at New York University.

Dark matter destruction
The idea of dark matter was first proposed in the 1930s, after the velocities of galaxies and stars suggested the universe contained much more mass than what could be seen. Dark matter would not reflect light, so it couldn't be observed directly by telescopes.

Now scientists calculate dark matter makes up roughly 80 percent of all matter, with regular atoms contributing a puny 20 percent.

The Fermi Gamma-ray Space Telescope, which has scanned the heavens in high-energy gamma-ray light since it was launched in 2008, has observed a signal of gamma-rays at the very center of the galaxy that was brighter than expected. Hooper and Goodenough tested many models to explain what could be creating this light. They ultimately concluded it must be caused by dark matter particles that are packed in so densely that they are destroying each other and releasing energy in the form of light.

  1. Most popular

Physicists have theorized that dark matter particles might be their own antimatter partners, and thus when two dark matter particles meet under the right circumstances, they would destroy each other. Alternatively, dark matter particles might be meeting anti-dark matter particles at the galactic center.

Either way, the researchers think the Milky Way's gamma-ray glow is caused by dark matter explosions.

By studying the data on this radiation, Hooper and Goodenough calculated that dark matter must be made of particles called WIMPs (weakly interacting massive particles) with masses between 7.3 and 9.2 GeV (giga electron volts) almost nine times the mass of a proton. They also calculated a property known as the cross-section, which describes how likely the particle is to interact with others.

Knowing these two properties would represent a huge leap forward in our understanding of dark matter.

"It's the biggest thing that's happened in dark matter since we learned it existed," Hooper said. "So long as no unexpected alternative explanations come forward, I think yes, we've finally found it."

The researchers have submitted a paper describing their findings to the journal Physics Review Letters B, but it has not yet gone through the peer-review process.

Some skepticism remains
Not everyone is ready to accept that dark matter has been found.

Hooper and Goodenough based their analysis on data released to the public from the Fermi observatory's Large Area Telescope. However, the official Fermi team, a large collaboration of international scientists, has not finished studying the intriguing glow. While they don't exclude the possibility that it is dark matter, team members are not ready to dismiss the possibility of another explanation.

"We feel that astrophysical interpretations for the gamma-ray signals from the region of the galactic center have to be further explored," said Seth Digel, analysis coordinator for the Large Area Telescope collaboration and a staff physicist at the SLAC National Accelerator Laboratory in Menlo Park, Calif. "I can't and won't say what they've done is wrong, but as a collaboration we dont have our own final understanding of the data."

Fermi scientists stressed that the analysis of the Milky Way's center is very complex, because there are so many bright sources of gamma-ray light in this crowded region. Various types of spinning stars called pulsars, as well as remnants left over from supernovas, also contribute confusing signals.

"More work needs to be done in this direction, and people within the collaboration are working hard to accomplish this goal. Until this is done, it is too difficult to interpret the data," said Simona Murgia, another SLAC scientist and Fermi science team member.

Promising hints
Hooper agreed that the case is not yet closed.

"I want a lot of people who are experts to think about this hard and try to make it go away," he said. "If we all agree we can't, then we'll have our answer."

One reason he and Goodenough think they are on the right track is that their calculation of the mass of dark matter particles aligns with some promising hints from other studies, he said.

Two ground-based experiments aimed at detecting dark matter have found preliminary indications of particles with roughly the same mass. The University of Chicago's CoGeNT project, buried deep in the Soudan iron mine in northeastern Minnesota, and DAMA, an Italian experiment underground near the Gran Sasso Mountains outside of Rome, both found signals that they can't completely attribute to normal particles, but can't prove are from dark matter.

"Part of why this picture is so compelling has to do with those in fact," Hooper said. "I would argue that it's likely that all three of these experiments are seeing the same dark matter particle."

  1. Space news from
    1. KARE
      Teen's space mission fueled by social media

      Science editor Alan Boyle's blog: "Astronaut Abby" is at the controls of a social-media machine that is launching the 15-year-old from Minnesota to Kazakhstan this month for the liftoff of the International Space Station's next crew.

    2. Buzz Aldrin's vision for journey to Mars
    3. Giant black hole may be cooking up meals
    4. Watch a 'ring of fire' solar eclipse online

The Sagan standard
Still, it will take a lot of work to convince most astrophysicists that such a slippery substance has been captured at last.

"It's a complicated task to interpret what Dan and Lisa are seeing," said Doug Finkbeiner, a researcher at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "I do not find it persuasive, but that doesn't mean it is wrong."

Some scientists said we finally may be getting close to solving the mystery of dark matter. Michael Turner, director of the Kavli Institute for Cosmological Physics at the University of Chicago, said that between Fermi, the ground-based experiments, and the recently opened Large Hadron Collider particle accelerator at the CERN laboratory in Switzerland, scientists will likely confirm the existence of dark matter within the next decade.

For now, though, he's still waiting.

"This result is very intriguing but doesn't yet rise to the Sagan standard extraordinary claims require extraordinary evidence," Turner said. Other explanations would have to be eliminated, he said. "Nature knows many ways to make gamma rays."

© 2013 All rights reserved. More from

Photos: Month in Space: January 2014

loading photos...
  1. Southern stargazing

    Stars, galaxies and nebulas dot the skies over the European Southern Observatory's La Silla Paranal Observatory in Chile, in a picture released on Jan. 7. This image also shows three of the four movable units that feed light into the Very Large Telescope Interferometer, the world's most advanced optical instrument. Combining to form one larger telescope, they are greater than the sum of their parts: They reveal details that would otherwise be visible only through a telescope as large as the distance between them. (Y. Beletsky / ESO) Back to slideshow navigation
  2. A balloon's view

    Cameras captured the Grandville High School RoboDawgs' balloon floating through Earth's upper atmosphere during its ascent on Dec. 28, 2013. The Grandville RoboDawgs’ first winter balloon launch reached an estimated altitude of 130,000 feet, or about 25 miles, according to coaches Mike Evele and Doug Hepfer. It skyrocketed past the team’s previous 100,000-feet record set in June. The RoboDawgs started with just one robotics team in 1998, but they've grown to support more than 30 teams at public schools in Grandville, Mich. (Kyle Moroney / AP) Back to slideshow navigation
  3. Spacemen at work

    Russian cosmonauts Oleg Kotov, right, and Sergey Ryazanskiy perform maintenance on the International Space Station on Jan. 27. During the six-hour, eight-minute spacewalk, Kotov and Ryazanskiy completed the installation of a pair of high-fidelity cameras that experienced connectivity issues during a Dec. 27 spacewalk. The cosmonauts also retrieved scientific gear outside the station's Russian segment. (NASA) Back to slideshow navigation
  4. Special delivery

    The International Space Station's Canadian-built robotic arm moves toward Orbital Sciences Corp.'s Cygnus autonomous cargo craft as it approaches the station for a Jan. 12 delivery. The mountains below are the southwestern Alps. (NASA) Back to slideshow navigation
  5. Accidental art

    A piece of art? A time-lapse photo? A flickering light show? At first glance, this image looks nothing like the images we're used to seeing from the Hubble Space Telescope. But it's a genuine Hubble frame that was released on Jan. 27. Hubble's team suspects that the telescope's Fine Guidance System locked onto a bad guide star, potentially a double star or binary. This caused an error in the tracking system, resulting in a remarkable picture of brightly colored stellar streaks. The prominent red streaks are from stars in the globular cluster NGC 288. (NASA / ESA) Back to slideshow navigation
  6. Supersonic test flight

    A camera looking back over Virgin Galactic's SpaceShipTwo's fuselage shows the rocket burn with a Mojave Desert vista in the background during a test flight of the rocket plane on Jan. 10. Cameras were mounted on the exterior of SpaceShipTwo as well as its carrier airplane, WhiteKnightTwo, to monitor the rocket engine's performance. The test was aimed at setting the stage for honest-to-goodness flights into outer space later this year, and eventual commercial space tours.

    More about SpaceShipTwo on PhotoBlog (Virgin Galactic) Back to slideshow navigation
  7. Red lagoon

    The VLT Survey Telescope at the European Southern Observatory's Paranal Observatory in Chile captured this richly detailed new image of the Lagoon Nebula, released on Jan. 22. This giant cloud of gas and dust is creating intensely bright young stars, and is home to young stellar clusters. This image is a tiny part of just one of 11 public surveys of the sky now in progress using ESO telescopes. (ESO/VPHAS team) Back to slideshow navigation
  8. Fire on the mountain

    This image provided by NASA shows a satellite view of smoke from the Colby Fire, taken by the Multi-angle Imaging SpectroRadiometer aboard NASA's Terra spacecraft as it passed over Southern California on Jan. 16. The fire burned more than 1,863 acres and forced the evacuation of 3,700 people. (NASA via AP) Back to slideshow navigation
  9. Where stars are born

    An image captured by NASA's Spitzer Space Telescope shows the Orion Nebula, an immense stellar nursery some 1,500 light-years away. This false-color infrared view, released on Jan. 15, spans about 40 light-years across the region. The brightest portion of the nebula is centered on Orion's young, massive, hot stars, known as the Trapezium Cluster. But Spitzer also can detect stars still in the process of formation, seen here in red hues. (NASA / JPL-Caltech) Back to slideshow navigation
  10. Cygnus takes flight

    Orbital Sciences Corp.'s Antares rocket rises from NASA's Wallops Flight Facility on Wallops Island, Va, on Jan. 9. The rocket sent Orbital's Cygnus cargo capsule on its first official resupply mission to the International Space Station. (Chris Perry / NASA) Back to slideshow navigation
  11. A long, long time ago...

    This long-exposure picture from the Hubble Space Telescope, released Jan. 8, is the deepest image ever made of any cluster of galaxies. The cluster known as Abell 2744 appears in the foreground. It contains several hundred galaxies as they looked 3.5 billion years ago. Abell 2744 acts as a gravitational lens to warp space, brightening and magnifying images of nearly 3,000 distant background galaxies. The more distant galaxies appear as they did more than 12 billion years ago, not long after the Big Bang. (NASA / NASA via AFP - Getty Images) Back to slideshow navigation
  12. Frosty halo

    Sun dogs are bright spots that appear in the sky around the sun when light is refracted through ice crystals in the atmosphere. These sun dogs appeared on Jan. 5 amid brutally cold temperatures along Highway 83, north of Bismarck, N.D. The temperature was about 22 degrees below zero Fahrenheit, with a 50-below-zero wind chill.

    Slideshow: The Year in Space (Brian Peterson / The Bismarck Tribune via AP) Back to slideshow navigation
  1. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  2. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  3. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  4. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.


Discussion comments


Most active discussions

  1. votes comments
  2. votes comments
  3. votes comments
  4. votes comments