NASA/Glenn Benson
Technicians examine the $2 billion Alpha Magnetic Spectrometer instrument in a work stand ahead of its planned launch on NASA's space shuttle Endeavour. The AMS instrument will search for cosmic rays from the International Space Station.
By
updated 4/26/2011 4:55:09 PM ET 2011-04-26T20:55:09

A cutting-edge experiment hunting for antimatter galaxies and signs of dark matter that was very nearly cancelled is finally poised to voyage into orbit aboard the next-to-last space shuttle mission.

The ambitious Alpha Magnetic Spectrometer is a more than 15,000-pound (6,900-kilogram) device searching for cosmic- rays — high-energy charged particles from outer space. The nearly $2 billion experiment will ride up to the International Space Station on the shuttle Endeavour on Friday (April 29).

The instrument will employ a nearly 4,200-pound (1,900 kg) permanent magnet to generate a strong, uniform magnetic field more than 3,000 times more intense than Earth's. This deflects cosmic rays so that a battery of detectors can analyze their properties, such as charge and velocity, and beam their findings to Earth. [ Video: Sifting Through the Cosmic Sand for Dark Matter ]

But while the Alpha Magnetic Spectrometer promises big discoveries for the field of astrophysics, just getting the instrument on the launch pad has been a challenge.

After the 2003 Columbia shuttle accident, NASA initially cancelled the mission that would deliver the spectrometer to the space station. The mission was reinstated after substantial lobbying from lawmakers and scientists. Last year, engineers replaced the big magnet on the spectrometer with a longer-lasting one to get more science out of the instrument through 2020, the expected end life of the space station. [ Photos: Shuttle Endeavour's Last Mission ]

"It took 17 years and 600 physicists from 16 countries to get this far — it's been a major international effort," Nobel laureate Samuel Ting, principal investigator for the Alpha Magnetic Spectrometer,told SPACE.com. "We've checked and rechecked everything to make sure it's right. Now we're just waiting to launch it."

The hunt for cosmic rays and antimatter

Cosmic rays can pack up to millions of times more energy than any manmade particle accelerator is capable of. As such, they can reveal details about the universe that no experiment on Earth could. By analyzing cosmic rays, researchers hope the Alpha Magnetic Spectrometer could help solve a number of science's most baffling mysteries, such as whether antimatter galaxies exist and what dark matter is made of.

One of the most perplexing questions in physics is why matter seems to dominate the known cosmos when it should be made of equal parts matter and its mirror image antimatter, and it may be that antimatter does exist in vast amounts in the universe. If the Alpha Magnetic Spectrometer detects anti-helium or heavier antimatter elements, that could be strong proof of antimatter galaxies, as such large bits of antimatter could likely only be made by antimatter stars.

Another enigma is the nature of unseen, as-yet-unidentified dark matter makes up about 85 percent of all matter in the universe, which scientists know exists because of the gravitational effects it has on galaxies. One of the leading candidates for dark matter is a particle known as the neutralino. If neutralinos exist, when they collide with each other, they should give off a large number of high-energy anti-electrons that the Alpha Magnetic Spectrometer can detect.

Besides exploring known mysteries in science, "this is the first time we will study cosmic rays in space over a long duration with very high accuracy, so we're entering a new area where we really do not know what we will find," Ting said.

A $2 billion space experiment is born

The Alpha Magnetic Spectrometer was first conceived by Ting and his colleagues in 1994. The aim is to study cosmic rays in space, as the Earth's atmosphere is a barrier for investigating them on the ground. [ Wacky Physics: The Coolest Little Particles in Nature ]

"In space, there are two types of particles. One has no charge, namely light rays and neutrinos, and traditionally, over the last century, all our understanding about space has been based on study of these from many, many telescopes in space and on the ground," Ting said. "When it comes to charged particles such as cosmic rays, "because they carry a charge, they must have mass, and because they have mass, they get absorbed in Earth's atmosphere, so you therefore have to got to space to look at them."

  1. Most popular

Investigating the electrical charge on charged particles requires a magnet. Originally the Alpha Magnetic Spectrometer was going to fly with a superconducting magnet that would last for three years until the liquid helium needed to keep it cool ran out.

"When we tested the superconducting magnet in a thermal vacuum chamber to simulate space, we found it could only be operated for three years before it needed to get its liquid helium refilled, and there's really no way to do so without the space shuttle, which has been terminated," Ting explained.

Rather than have the Alpha Magnetic Spectrometer operate with a superconducting magnet for only three years "and become a museum piece," Ting said, they decided to go with a permanent magnet that actually flew on a 1998 shuttle flight.

Although the permanent magnet is weaker than the superconducting one — essentially making it 30 percent less sensitive — President Barack Obama extended the life of the International Space Station through at least 2020 instead of shutting it down about 2015, effectively granting the experiment six times as much time to collect data, "so you have a tremendous net gain," Ting explained.

Gaining approval for the project has been an uphill battle.

In fact, NASA originally cancelled the shuttle mission to deliver the device to the International Space Station following the 2003 Columbia shuttle disaster. Congress later approved funding for its flight upward.

"Many leading scientists and major political leaders in the Senate and House spoke up for the Alpha Magnetic Spectrometer," Ting said. "The idea is that if building the International Space Station cost $100 billion, there should really be a good science project there."

Follow SPACE.com contributor Charles Q. Choi on Twitter @cqchoi. Visit SPACE.com for the latest in space science and exploration news on Twitter @Spacedotcom   and on Facebook.

© 2013 Space.com. All rights reserved. More from Space.com.

Photos: Month in Space: January 2014

loading photos...
  1. Southern stargazing

    Stars, galaxies and nebulas dot the skies over the European Southern Observatory's La Silla Paranal Observatory in Chile, in a picture released on Jan. 7. This image also shows three of the four movable units that feed light into the Very Large Telescope Interferometer, the world's most advanced optical instrument. Combining to form one larger telescope, they are greater than the sum of their parts: They reveal details that would otherwise be visible only through a telescope as large as the distance between them. (Y. Beletsky / ESO) Back to slideshow navigation
  2. A balloon's view

    Cameras captured the Grandville High School RoboDawgs' balloon floating through Earth's upper atmosphere during its ascent on Dec. 28, 2013. The Grandville RoboDawgs’ first winter balloon launch reached an estimated altitude of 130,000 feet, or about 25 miles, according to coaches Mike Evele and Doug Hepfer. It skyrocketed past the team’s previous 100,000-feet record set in June. The RoboDawgs started with just one robotics team in 1998, but they've grown to support more than 30 teams at public schools in Grandville, Mich. (Kyle Moroney / AP) Back to slideshow navigation
  3. Spacemen at work

    Russian cosmonauts Oleg Kotov, right, and Sergey Ryazanskiy perform maintenance on the International Space Station on Jan. 27. During the six-hour, eight-minute spacewalk, Kotov and Ryazanskiy completed the installation of a pair of high-fidelity cameras that experienced connectivity issues during a Dec. 27 spacewalk. The cosmonauts also retrieved scientific gear outside the station's Russian segment. (NASA) Back to slideshow navigation
  4. Special delivery

    The International Space Station's Canadian-built robotic arm moves toward Orbital Sciences Corp.'s Cygnus autonomous cargo craft as it approaches the station for a Jan. 12 delivery. The mountains below are the southwestern Alps. (NASA) Back to slideshow navigation
  5. Accidental art

    A piece of art? A time-lapse photo? A flickering light show? At first glance, this image looks nothing like the images we're used to seeing from the Hubble Space Telescope. But it's a genuine Hubble frame that was released on Jan. 27. Hubble's team suspects that the telescope's Fine Guidance System locked onto a bad guide star, potentially a double star or binary. This caused an error in the tracking system, resulting in a remarkable picture of brightly colored stellar streaks. The prominent red streaks are from stars in the globular cluster NGC 288. (NASA / ESA) Back to slideshow navigation
  6. Supersonic test flight

    A camera looking back over Virgin Galactic's SpaceShipTwo's fuselage shows the rocket burn with a Mojave Desert vista in the background during a test flight of the rocket plane on Jan. 10. Cameras were mounted on the exterior of SpaceShipTwo as well as its carrier airplane, WhiteKnightTwo, to monitor the rocket engine's performance. The test was aimed at setting the stage for honest-to-goodness flights into outer space later this year, and eventual commercial space tours.

    More about SpaceShipTwo on PhotoBlog (Virgin Galactic) Back to slideshow navigation
  7. Red lagoon

    The VLT Survey Telescope at the European Southern Observatory's Paranal Observatory in Chile captured this richly detailed new image of the Lagoon Nebula, released on Jan. 22. This giant cloud of gas and dust is creating intensely bright young stars, and is home to young stellar clusters. This image is a tiny part of just one of 11 public surveys of the sky now in progress using ESO telescopes. (ESO/VPHAS team) Back to slideshow navigation
  8. Fire on the mountain

    This image provided by NASA shows a satellite view of smoke from the Colby Fire, taken by the Multi-angle Imaging SpectroRadiometer aboard NASA's Terra spacecraft as it passed over Southern California on Jan. 16. The fire burned more than 1,863 acres and forced the evacuation of 3,700 people. (NASA via AP) Back to slideshow navigation
  9. Where stars are born

    An image captured by NASA's Spitzer Space Telescope shows the Orion Nebula, an immense stellar nursery some 1,500 light-years away. This false-color infrared view, released on Jan. 15, spans about 40 light-years across the region. The brightest portion of the nebula is centered on Orion's young, massive, hot stars, known as the Trapezium Cluster. But Spitzer also can detect stars still in the process of formation, seen here in red hues. (NASA / JPL-Caltech) Back to slideshow navigation
  10. Cygnus takes flight

    Orbital Sciences Corp.'s Antares rocket rises from NASA's Wallops Flight Facility on Wallops Island, Va, on Jan. 9. The rocket sent Orbital's Cygnus cargo capsule on its first official resupply mission to the International Space Station. (Chris Perry / NASA) Back to slideshow navigation
  11. A long, long time ago...

    This long-exposure picture from the Hubble Space Telescope, released Jan. 8, is the deepest image ever made of any cluster of galaxies. The cluster known as Abell 2744 appears in the foreground. It contains several hundred galaxies as they looked 3.5 billion years ago. Abell 2744 acts as a gravitational lens to warp space, brightening and magnifying images of nearly 3,000 distant background galaxies. The more distant galaxies appear as they did more than 12 billion years ago, not long after the Big Bang. (NASA / NASA via AFP - Getty Images) Back to slideshow navigation
  12. Frosty halo

    Sun dogs are bright spots that appear in the sky around the sun when light is refracted through ice crystals in the atmosphere. These sun dogs appeared on Jan. 5 amid brutally cold temperatures along Highway 83, north of Bismarck, N.D. The temperature was about 22 degrees below zero Fahrenheit, with a 50-below-zero wind chill.

    Slideshow: The Year in Space (Brian Peterson / The Bismarck Tribune via AP) Back to slideshow navigation
  1. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  2. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  3. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  4. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

Discuss:

Discussion comments

,

Most active discussions

  1. votes comments
  2. votes comments
  3. votes comments
  4. votes comments