NASA
NASA
The OSIRIS-REx spacecraft, shown here in an artist's conception, would fly to the asteroid 1999 RQ36, collect samples with a probe, then fly back to Earth to return the samples. This artwork uses golden arcs to represent OSIRIS-REx's outward and return trip.
By Senior writer
updated 5/25/2011 8:44:24 PM ET 2011-05-26T00:44:24

NASA will launch a sample-return mission to an asteroid in 2016, agency officials announced Wednesday.

The mission, called Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer (OSIRIS-Rex) will reach an asteroid called 1999 RQ36 in 2020. The unmanned spacecraft will use a robotic arm to snag some samples.

According to the plan, the probe will return these bits of space rock to Earth in 2023 so scientists can study them for clues about the solar system's origin — and possibly, how life may have begun on our planet. [Video: The OSIRIS-Rex Mission to 1999 RQ36]

  1. Space news from NBCNews.com
    1. KARE
      Teen's space mission fueled by social media

      Science editor Alan Boyle's blog: "Astronaut Abby" is at the controls of a social-media machine that is launching the 15-year-old from Minnesota to Kazakhstan this month for the liftoff of the International Space Station's next crew.

    2. Buzz Aldrin's vision for journey to Mars
    3. Giant black hole may be cooking up meals
    4. Watch a 'ring of fire' solar eclipse online

The $800 million OSIRIS-Rex will be the United States' first asteroid sample-return effort and only the second mission in history to retrieve samples from an asteroid. Japan's Hayabusa spacecraft successfully returned tiny grains of the asteroid Itokawa to Earth in June 2010. [Infographic: How Japan's Asteroid Mission Worked]

Itokawa is a relatively run-of-the-mill stony asteroid. 1999 RQ36, however, appears to be packed full of carbon-based material. If an asteroid seeded Earth with life's building blocks long ago, as many scientists suspect, it likely looked a lot like 1999 RQ36.

"We're going for something rich in organics, which might have had something to do with life getting started," OSIRIS-Rex principal investigator Mike Drake, of the University of Arizona, told reporters. "That's the idea — time capsule, containing probably the building blocks of life."

There's also likely another reason asteroid 1999 RQ36 has drawn the attention of scientists: The space rock has been classified as a potentially hazardous asteroid, since its orbit brings it close to Earth in the year 2182. There is an extremely remote chance (a recent study pegs it at about 1-in-1000) that the 1,900-foot-wide (579-meter) asteroid could pose a threat to Earth.

A mission to an asteroid
NASA selected OSIRIS-Rex as part of its New Frontiers program, which prioritizes low-cost science missions that explore the solar system. OSIRIS-Rex beat out two other finalists, a sample-return mission from the far side of the moon and a mission to the surface of Venus.

Asteroids are bits and pieces left over from the solar system's formation more than 4.5 billion years ago, the dregs that didn't get swept up into the sun and planets. They therefore serve as a sort of time capsule, containing ancient material that can tell scientists a lot about the solar system's birth.

Researchers hope OSIRIS-Rex will help them learn more about those long-ago days, as well the possibility that an asteroid jump-started life on Earth. 1999 RQ36 is a good study target in this regard; telescope observations suggest it contains large amounts of organics, Drake said.

Pristine organics from space are hard to come by on Earth; they get scorched during their passage through the atmosphere or contaminated by the bountiful life on our planet. That's why it's so important, and so exciting, to snag some samples of the stuff from an asteroid in space, according to Drake.

"We're bringing back something that's essentially untouched by human hands, has not seen the Earth's biota and will be a pristine sample of what's out there," he said.

The OSIRIS-Rex probe is not NASA's only mission to an asteroid. The space agency's Dawn spacecraft is currently closing in on Vesta, the second-largest asteroid in the solar system, and will arrive at the space rock later this year. But Dawn will simply orbit Vesta, not gather samples. It will also eventually leave Vesta and rendezvous with Ceres, the largest asteroid in the solar system, for a similar orbiting campaign. [Photos: Asteroids in Deep Space]

OSIRIS-Rex, meanwhile, will get up close and personal with asteroid 1999 RQ36 and return samples to Earth. But the mission has a long road ahead.

Long journey and lots of reconnaissance
OSIRIS-Rex will launch in 2016 and approach 1999 RQ36 beginning about three years later. But it won't pluck its samples immediately. Rather, the spacecraft will study the asteroid for about a year, so scientists can better understand its characteristics, choose the best sampling site and map out a good strategy.

The need for such a prolonged observation period is one lesson learned from the Hayabusa mission, which had to do quite a bit of troubleshooting, Drake said.

"They did not have enough time at their target asteroid, Itokawa, to really understand the environment they were operating in and safely conduct proximity operations leading to sample return," Drake said.

After performing its reconnaissance, OSIRIS-Rex will gradually move closer to its sampling site, and the arm will extend to collect at least 2 ounces (60 grams) of material. The spacecraft will never actually land on 1999 RQ36.

"We kiss the surface," Drake said.

The acquired sample will be stored in a capsule, which will eventually land at Utah's Test and Training Range in 2023. The capsule's design will be similar to that used by NASA's Stardust spacecraft, which returned particles from Comet Wild 2 in 2006.

The OSIRIS-Rex spacecraft, meanwhile, will be redirected into a new solar orbit, likely with enough fuel to perform another mission in the future if NASA wishes, researchers said.

Studying the sample
Once the asteroid bits come down to Earth, researchers will study them to learn as much as they can about the solar system's formation and the organic molecules that asteroids may be ferrying throughout the solar system.

But OSIRIS-Rex also has other potential benefits, researchers said.

"The knowledge from the mission also will help us to develop methods to better track the orbits of asteroids," Jim Green, director of NASA's Planetary Science Division in Washington, said in a statement.

Specifically, the mission should help scientists accurately measure the "Yarkovsky effect" for the first time. This phenomenon is the tiny push the sun gives an asteroid, as it absorbs sunlight and re-emits that energy as heat. The small push adds up over time, but it's tough to predict in detail because asteroids' shapes, compositions and rotations can vary so much.

If scientists hope to predict a potentially hazardous asteroid's path, they must understand the Yarkovsky effect, researchers said. OSIRIS-Rex should help refine 1999 RQ36's orbit, allowing scientists to get a better handle on its trajectory and possibly understand how to mitigate or prevent potential Earth impacts.

You can follow Space.com senior writer Mike Wall on Twitter: @michaeldwall. Follow Space.com for the latest in space science and exploration news on Twitter @Spacedotcom and on Facebook.

© 2013 Space.com. All rights reserved. More from Space.com.

Interactive: Below the belt

Explainer: Out-of-this-world destinations

  • NASA

    We are headed to Mars ... eventually. But first we need the rocket technology and human spaceflight savvy to get us there safely and efficiently. And the best way to do that is to visit places such as asteroids, our moon, a Martian moon and even no man's lands in space called "Lagrange points," NASA administrator Charles Bolden explained during the unveiling of the agency's revised vision for space exploration.

    The vision shifts focus away from a return to the moon as part of a steppingstone to Mars in favor of what experts call a "flexible path" to space exploration, pushing humans ever deeper into the cosmos.

    Click the "Next" label to check out six other potential destinations astronauts may visit in the years and decades to come en route to Mars.

    — John Roach, msnbc.com contributor

  • Lessons to learn on the space station

    NASA

    The cooperation required to build and maintain the International Space Station will be a key to propelling humans on to Mars, according to Louis Friedman, co-founder of The Planetary Society. The society is a space advocacy organization that supports the flexible path to space exploration. In fact, the space station itself could be a training ground for Mars-bound astronauts.

    Astronauts can spend ever longer blocks of time on the station to gain experience in long-duration flights, for example. They could also practice extravehicular activities akin to those expected on a Mars mission, Friedman noted.

  • Lunar orbit, a test of new technology

    NASA

    Lunar orbit, too, is a familiar destination for human spaceflight, but a return to the familiar with new technology would allow astronauts to test the engineering of systems designed to go deeper into space, according to Friedman.

    A return to the moon is still in the cards on the flexible path, but going to lunar orbit first defers the cost of developing the landing and surface systems needed to get in and out of the lunar gravity well, according to experts.

    The famous "Earthrise" image shown here was made in 1968 during Apollo 8, the first human voyage to orbit the moon.

  • Stable no man's lands in space

    NASA / WMAP Science Team

    There are places in space where the gravitational pulls of Earth and the moon, or Earth and the sun, have a balancing effect on a third body in orbit. Those five locations, known as Lagrange points, could offer relatively stable parking spots for astronomical facilities such as space telescopes or satellites. Human spaceflights to these points would allow astronauts to service these instruments.

    In addition, space experts believe a trip to a Lagrange point could serve as a training mission for astronauts headed to points deeper in space, such as an asteroid. Nevertheless, reaching a Lagrange point would be more of a technical achievement than a scientific achievement, according to Friedman. "It is an empty spot in space," he said.

  • Visit an asteroid near you?

    Image: Paraffin candles
    Dan Durda  /  FIAAA

    The first stop astronauts may make in interplanetary space is one of the asteroids that cross near Earth's orbit. Scientists have a keen interest in the space rocks because of the threat that one of them could strike Earth with devastating consequences. An asteroid mission would allow scientists to better understand what makes the rocks tick, and thus how to best divert one that threatens to smack our planet.

    Humans have also never been to an asteroid, which would make such a visit an exciting first, noted Friedman. "Imagine how interesting it will be to see an astronaut step out of a spacecraft and down onto an asteroid and perform scientific experiments," he said. What's more, since asteroids have almost no gravity, an asteroid encounter would be like docking with the space station, which doesn't require a heavy-lift rocket for the return. That makes an asteroid a potentially less expensive destination than the surface of the moon.

  • Back to the moon?

    NASA via Getty Images

    The moon-Mars path of human space exploration originally envisioned the moon as a training ground for a mission to the Red Planet. While the flexible-path strategy broadens the training field, the moon remains a candidate destination, according to NASA.

    Several other nations also have the moon's surface in their sights, including Japan, India and China. Some experts fear the dedicated lunar programs of these nations will eventually leave the United States in the dust as it focuses on an ambiguous flexible path.

    Friedman, of The Planetary Society, said NASA should support the lunar programs of Japan, India and China as part of team building for an international Mars mission, but sees no reason for NASA to focus on the moon. "We've done that already and that was Apollo," he said.

  • Martian moon a final pit stop?

    NASA / JPL-Caltech / UA

    Before astronauts go all the way to Mars, there's reason to make a final stop at one of its moons, Phobos or Deimos. The two moons are less than 20 miles across at their widest, which means landing on them would be less expensive than the Red Planet itself.

    Friedman used to consider a mission to a Martian moon nonsensical - akin to going to the base camp of Mount Everest instead of going to the top of the mountain. "I've now turned myself around on that, because you do go to the base camp and you do actually conduct training activities there before you attempt the summit," he said.

    "By all means go there," he added. "Test out your rendezvous and docking at Mars, conduct your three-year, round-trip mission, maybe tele-operate some rovers of the surface (of Mars). That will all be interesting and then the next mission will finally go down to the surface."

Photos: Month in Space: January 2014

loading photos...
  1. Southern stargazing

    Stars, galaxies and nebulas dot the skies over the European Southern Observatory's La Silla Paranal Observatory in Chile, in a picture released on Jan. 7. This image also shows three of the four movable units that feed light into the Very Large Telescope Interferometer, the world's most advanced optical instrument. Combining to form one larger telescope, they are greater than the sum of their parts: They reveal details that would otherwise be visible only through a telescope as large as the distance between them. (Y. Beletsky / ESO) Back to slideshow navigation
  2. A balloon's view

    Cameras captured the Grandville High School RoboDawgs' balloon floating through Earth's upper atmosphere during its ascent on Dec. 28, 2013. The Grandville RoboDawgs’ first winter balloon launch reached an estimated altitude of 130,000 feet, or about 25 miles, according to coaches Mike Evele and Doug Hepfer. It skyrocketed past the team’s previous 100,000-feet record set in June. The RoboDawgs started with just one robotics team in 1998, but they've grown to support more than 30 teams at public schools in Grandville, Mich. (Kyle Moroney / AP) Back to slideshow navigation
  3. Spacemen at work

    Russian cosmonauts Oleg Kotov, right, and Sergey Ryazanskiy perform maintenance on the International Space Station on Jan. 27. During the six-hour, eight-minute spacewalk, Kotov and Ryazanskiy completed the installation of a pair of high-fidelity cameras that experienced connectivity issues during a Dec. 27 spacewalk. The cosmonauts also retrieved scientific gear outside the station's Russian segment. (NASA) Back to slideshow navigation
  4. Special delivery

    The International Space Station's Canadian-built robotic arm moves toward Orbital Sciences Corp.'s Cygnus autonomous cargo craft as it approaches the station for a Jan. 12 delivery. The mountains below are the southwestern Alps. (NASA) Back to slideshow navigation
  5. Accidental art

    A piece of art? A time-lapse photo? A flickering light show? At first glance, this image looks nothing like the images we're used to seeing from the Hubble Space Telescope. But it's a genuine Hubble frame that was released on Jan. 27. Hubble's team suspects that the telescope's Fine Guidance System locked onto a bad guide star, potentially a double star or binary. This caused an error in the tracking system, resulting in a remarkable picture of brightly colored stellar streaks. The prominent red streaks are from stars in the globular cluster NGC 288. (NASA / ESA) Back to slideshow navigation
  6. Supersonic test flight

    A camera looking back over Virgin Galactic's SpaceShipTwo's fuselage shows the rocket burn with a Mojave Desert vista in the background during a test flight of the rocket plane on Jan. 10. Cameras were mounted on the exterior of SpaceShipTwo as well as its carrier airplane, WhiteKnightTwo, to monitor the rocket engine's performance. The test was aimed at setting the stage for honest-to-goodness flights into outer space later this year, and eventual commercial space tours.

    More about SpaceShipTwo on PhotoBlog (Virgin Galactic) Back to slideshow navigation
  7. Red lagoon

    The VLT Survey Telescope at the European Southern Observatory's Paranal Observatory in Chile captured this richly detailed new image of the Lagoon Nebula, released on Jan. 22. This giant cloud of gas and dust is creating intensely bright young stars, and is home to young stellar clusters. This image is a tiny part of just one of 11 public surveys of the sky now in progress using ESO telescopes. (ESO/VPHAS team) Back to slideshow navigation
  8. Fire on the mountain

    This image provided by NASA shows a satellite view of smoke from the Colby Fire, taken by the Multi-angle Imaging SpectroRadiometer aboard NASA's Terra spacecraft as it passed over Southern California on Jan. 16. The fire burned more than 1,863 acres and forced the evacuation of 3,700 people. (NASA via AP) Back to slideshow navigation
  9. Where stars are born

    An image captured by NASA's Spitzer Space Telescope shows the Orion Nebula, an immense stellar nursery some 1,500 light-years away. This false-color infrared view, released on Jan. 15, spans about 40 light-years across the region. The brightest portion of the nebula is centered on Orion's young, massive, hot stars, known as the Trapezium Cluster. But Spitzer also can detect stars still in the process of formation, seen here in red hues. (NASA / JPL-Caltech) Back to slideshow navigation
  10. Cygnus takes flight

    Orbital Sciences Corp.'s Antares rocket rises from NASA's Wallops Flight Facility on Wallops Island, Va, on Jan. 9. The rocket sent Orbital's Cygnus cargo capsule on its first official resupply mission to the International Space Station. (Chris Perry / NASA) Back to slideshow navigation
  11. A long, long time ago...

    This long-exposure picture from the Hubble Space Telescope, released Jan. 8, is the deepest image ever made of any cluster of galaxies. The cluster known as Abell 2744 appears in the foreground. It contains several hundred galaxies as they looked 3.5 billion years ago. Abell 2744 acts as a gravitational lens to warp space, brightening and magnifying images of nearly 3,000 distant background galaxies. The more distant galaxies appear as they did more than 12 billion years ago, not long after the Big Bang. (NASA / NASA via AFP - Getty Images) Back to slideshow navigation
  12. Frosty halo

    Sun dogs are bright spots that appear in the sky around the sun when light is refracted through ice crystals in the atmosphere. These sun dogs appeared on Jan. 5 amid brutally cold temperatures along Highway 83, north of Bismarck, N.D. The temperature was about 22 degrees below zero Fahrenheit, with a 50-below-zero wind chill.

    Slideshow: The Year in Space (Brian Peterson / The Bismarck Tribune via AP) Back to slideshow navigation
  1. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  2. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  3. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  4. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

Discuss:

Discussion comments

,

Most active discussions

  1. votes comments
  2. votes comments
  3. votes comments
  4. votes comments