Artist's render of spaceship over Mars
NASA/JPL-Caltech
Artist's concept of NASA's Mars Science Laboratory spacecraft approaching Mars.
By
updated 11/25/2011 3:19:11 PM ET 2011-11-25T20:19:11

For more than a decade, robotic probes sent to Mars have been searching for signs of past water, believed to be one of the key ingredients for life.

Now, NASA opens a new chapter in the search for extraterrestrial life with an ambitious mission to find life's habitats, and possibly even organics, on Mars.

"I'd be surprised if we landed on the surface (of Mars) and didn't find something that looked like it could have been a formerly habitable environment," said California Institute of Technology planetary scientist John Grotzinger, lead researcher for NASA's Mars Science Laboratory.

NEWS: Mars Rover Plutonium Triggers Launch Precautions

But what scientists really want to find is organic carbon — molecules containing carbon that are derived from organic processes — if indeed any has been preserved in the harsh Martian environment.

"It's a long shot, but we're going to try," Grotzinger told reporters during a pre-launch press conference.

It's been 35 years since NASA went looking for organics on Mars. Scientists didn't think the Viking lander twins, which touched down in 1976, found evidence of biological activity, though the results of one key experiment have been mired in controversy.

PHOTOS: When Discovery News Met Mars Rover 'Curiosity'

Mars Science Lab, nicknamed Curiosity, isn't a life-detection mission like Viking. Rather, it is intended to chemically analyze the landing site known as Gale Crater for habitats that could have supported life, or possibly still can.

WATCH VIDEO: New concepts for Mars-probing rovers would use Martian wind to move around the planet.

Curiosity follows three previous rovers — Pathfinder, Spirit and Opportunity — the lander Phoenix, and a fleet of orbiting probes that have focused on looking for signs of past water. The previous missions returned overwhelming evidence that Mars was once a warmer and wetter place and hints that the planet once sported an ocean, rivers and other bodies of water on its surface.

  1. Space news from NBCNews.com
    1. KARE
      Teen's space mission fueled by social media

      Science editor Alan Boyle's blog: "Astronaut Abby" is at the controls of a social-media machine that is launching the 15-year-old from Minnesota to Kazakhstan this month for the liftoff of the International Space Station's next crew.

    2. Buzz Aldrin's vision for journey to Mars
    3. Giant black hole may be cooking up meals
    4. Watch a 'ring of fire' solar eclipse online

The question now is whether the water existed long enough for life to evolve and if there were other ingredients necessary for life, namely organic compounds, which are the building blocks for life on Earth.

ANALYSIS: New Mars Rover to Land at Gale Crater: Video

"One of the ingredients of life is water. We're now looking to see if we can find other conditions that are necessary for life by defining habitability or what does it take in the environment to support life," said Mary Voytek, director of NASA's astrobiology program.

The $2.5-billion rover is scheduled for launch at 10:02 a.m. EST Saturday from Cape Canaveral Air Force Station in Florida.

Its 60-million mile journey is expected to end in August 2012, with a touchdown inside the 96-mile wide Gale Crater. The site features a three-mile-high mountain of sediment that will be the focus of Curiosity's studies for at least two years.

© 2012 Discovery Channel

Photos: Mars Curiosity rover

loading photos...
  1. A United Launch Alliance Atlas V rocket carrying NASA's Mars Science Laboratory Curiosity rover lifts off from Launch Complex 41 at Cape Canaveral Air Force Station in Cape Canaveral, Fla., Saturday, Nov. 26, 2011. (Terry Renna / AP) Back to slideshow navigation
  2. The Mars Science Laboratory, and accompanying Atlas V rocket, is hoisted into place at Launch Complex 41 at Cape Canaveral Air Force Station in Florida. (Kim Shiflett / NASA) Back to slideshow navigation
  3. NASA technicians look over the Mars Science Laboratory Curiosity rover during inspections at the Jet Propulsion Laboratory in Pasadena, Calif. (NASA) Back to slideshow navigation
  4. NASA technicians examine the wheels of the Mars Science Laboratory rover. (Dutch Slager / NASA via AP) Back to slideshow navigation
  5. Technicians examine the turret at the end of the Mars Science Laboratory's arm. The turret weighs 73 pounds and holds the machines that will touch the rocks and soil on Mars. (Frankie Martin / NASA) Back to slideshow navigation
  6. The Mars Science Laboratory's Entry, Descent and Landing Instrument will measure heat shield temperatures and atmospheric pressures during the spacecraft's high-speed, extremely hot entry into the Martian atmosphere. (Lockheed Martin) Back to slideshow navigation
  7. NASA engineers stand by Mars Science Laboratory's aeroshell, a conical shell that will help protect the rover Curiosity, a robot the size of a car, from the searing temperatures of atmospheric entry when it lands on Mars, shown at the Jet Propulsion Laboratory in Pasadena, Calif., Monday, April 4. (Damian Dovarganes / AP) Back to slideshow navigation
  8. National Aeronautics and Space Administration NASA mega-rover, Curiosity's wheels and suspension are shown at the Mars Science Laboratory. Technicians, dressed in protective suits, has been working around the clock inside a clean room at the JPL assembling the craft, testing its science instruments, before shipping it off to Florida for launch later this year. (Damian Dovarganes / AP) Back to slideshow navigation
  9. There are 10 instruments on board Curiosity that can analyze samples to help determine if the Red Planet is or has ever been "favorable" to microbial life, according to NASA.

    See more close-up Curiosity pics by Joseph Linaschke at Boing Boing (Joseph Linaschke / photojoseph.com) Back to slideshow navigation
  10. National Aeronautics and Space Administration, NASA engineers work on Curiosity, a mega-rover at the Mars Science Laboratory. (Damian Dovarganes / AP) Back to slideshow navigation
  11. NASA Mars Curiosity's mega-rover's Mars Science Laboratory Mast Camera is seen at the Mars Science Laboratory, at the Jet Propulsion Laboratory in Pasadena, Calif. (Damian Dovarganes / AP) Back to slideshow navigation
  12. Curiosity's wheels are individually powered, and enable the mega-rover to turn 360 degrees while staying in place.

    See more close-up Curiosity pics by Joseph Linaschke at Boing Boing (Joseph Linaschke / photojoseph.com) Back to slideshow navigation
  13. NASA engineers work on Curiosity. Last month, the mega-rover was subjected to "near-vacuum pressure," according to NASA, with temperatures colder than minus-200 degrees Fahrenheit, in order to simulate the environmental stresses of the Martian surface. (Damian Dovarganes / AP) Back to slideshow navigation
  1. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  2. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  3. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  4. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  1. Image:
    Terry Renna / AP
    Above: Slideshow (13) Mars Curiosity rover
  2. Image:
    Y. Beletsky / ESO
    Slideshow (12) Month in Space: January 2014

Explainer: 11 amazing things the Mars rover can do

  • The car-sized Curiosity rover is a 1-ton robotic beast that will take planetary exploration to the next level.

    Curiosity rover is the centerpiece of NASA's $2.5 billion Mars Science Laboratory. Its main goal is to assess whether the Red Planet is, or ever was, capable of supporting microbial life. The rover will employ 10 different science instruments to help it answer this question once it touches down on the Red Planet. Here's a brief rundown of these instruments (and one more on the rover's heat shield).

    — Mike Wall, Space.com

  • Mast Camera (MastCam)

    T.A. Dutch Slager / NASA / JPL-Caltech
    This view of the Curiosity rover's remote sensing mast shows the ChemCam in the white box at top, and the two cameras of the Mastcam system just below. Additional navigation cameras are placed farther outward from the Mastcam cameras.

    The MastCam is Curiosity's workhorse imaging tool. It will capture high-resolution color pictures and video of the Martian landscape, which scientists will study and laypeople will gawk at.

    MastCam consists of two camera systems mounted on a mast that rises above Curiosity's main body, so the instrument will have a good view of the Red Planet environment as the rover chugs through it. MastCam images will also help the mission team drive and operate Curiosity. (Photos of NASA's Curiosity Rover)

  • Mars Hand Lens Imager (MAHLI)

    NASA / JPL-Caltech
    The Curiosity rover's Mars Hand Lens Imager will acquire color close-up images of rocks and surface materials. A Swiss Army knife is shown for scale.

    MAHLI will function much like a high-powered magnifying glass, allowing Earthbound scientists to get up-close looks at Martian rocks and soil. The instrument will take color pictures of features as tiny as 12.5 microns — smaller than the width of a human hair.

    MAHLI sits on the end of Curiosity's five-jointed, 7-foot (2.1-meter) robotic arm, which is itself a marvel of engineering. So mission scientists will be able to point their high-tech hand lens pretty much wherever they want.

  • Mars Descent Imager (MARDI)

    NASA / JPL-Caltech / MSSS
    The Mars Descent Imager is flying on the Curiosity rover. A Swiss Army knife is included in the picture for purposes of showing scale.

    MARDI, a small camera located on Curiosity's main body, will record video of the rover's descent to the Martian surface (which will be accomplished with the help of a hovering, rocket-powered sky crane). (Video: Curiosity's Peculiar Landing)

    MARDI will click on a mile or two above the ground, as soon as Curiosity jettisons its heat shield. The instrument will then take video at five frames per second until the rover touches down. The footage will help the MSL team plan Curiosity's Red Planet rovings, and it should also provide information about the geological context of the landing site, the 100-mile-wide (160-km) Gale Crater.

  • Sample Analysis at Mars (SAM)

    NASA / JPL-Caltech
    This illustration of the mechanical configuration of the SAM shows the three instruments and several elements of the Chemical Separation and Processing Laboratory.

    SAM is the heart of Curiosity; at 83 pounds (38 kilograms), it makes up about half of the rover's science payload.

    SAM is actually a suite of three separate instruments — a mass spectrometer, a gas chromatograph and a laser spectrometer. These instruments will search for carbon-containing compounds, the building blocks of life as we know it. They will also look for other elements associated with life on Earth, such as hydrogen, oxygen and nitrogen.

    The SAM instrument suite is located in Curiosity's main body. The rover's robotic arm will drop samples into SAM via an inlet on the rover's exterior. Some of these samples will come from the interior of rocks, powder bored out by a 2-inch (5-centimeter) drill situated at the end of the arm.

    None of Curiosity's predecessors could get deep into Martian rocks, so scientists are excited about the drill.

    "For a geologist that studies rocks, there's nothing better than getting inside," said MSL deputy project scientist Joy Crisp, of NASA's Jet Propulsion Laboratory in Pasadena, Calif.

  • Chemistry and Mineralogy (CheMin)

    NASA / JPL-Caltech
    Clean-room workers carefully steer the hoisted CheMin instrument toward its installation into the Curiosity rover.

    CheMin will identify different types of minerals on Mars and quantify their abundance, which will help scientists better understand past environmental conditions on the Red Planet.

    Like SAM, CheMin has an inlet on Curiosity's exterior to accept samples delivered by the rover's robotic arm. The instrument will shine a fine X-ray beam through the sample, identifying minerals' crystalline structures based on how the X-rays diffract.

    "This is like magic to us," Crisp told Space.com. X-ray diffraction is a leading diagnostic technique for Earthbound geologists, she explained, but it hasn't made it to Mars yet. So CheMin should help Curiosity provide more definitive mineral characterizations than previous Mars rovers such as Spirit and Opportunity have been able to achieve.

  • Chemistry and Camera (ChemCam)

    NASA / JPL-Caltech
    An artist's conception shows the Curiosity rover's ChemCam firing its laser at Martian rock.

    For sheer coolness, it's tough to beat ChemCam. This instrument will fire a laser at Martian rocks from up to 30 feet (9 meters) away and analyze the composition of the vaporized bits.

    ChemCam will thus enable Curiosity to study rocks that are out of reach of its flexible robotic arm. It will also help the mission team determine from afar whether or not they want to send the rover over to investigate a particular landform.

    ChemCam is composed of several different parts. The laser sits on Curiosity's mast, along with a camera and a small telescope. Three spectrographs sit in the rover's body, connected to the mast components by fiber optics. The spectrographs will analyze the light emitted by excited electrons in the vaporized rock samples.

  • Alpha Particle X-Ray Spectrometer (APXS)

    NASA / JPL-Caltech
    The sensor head for the Alpha Particle X-ray Spectrometer is installed during testing. The head is 7.8 centimeters or about 3 inches tall.

    APXS, which sits at the end of Curiosity's arm, will measure the abundances of various chemical elements in Martian rocks and dirt.

    Curiosity will place the instrument in contact with samples of interest, and APXS will shoot out X-rays and helium nuclei. This barrage will knock electrons in the sample out of their orbits, causing a release of X-rays. Scientists will be able to identify elements based on the characteristic energies of these emitted X-rays.

    Spirit and Opportunity were outfitted with a previous version of APXS and used the instrument to help elucidate the prominent role water has played in shaping the Martian landscape. (Latest Mars Photos From Spirit and Opportunity)

  • Dynamic Albedo of Neutrons (DAN)

    NASA / JPL-Caltech / Roscosmos
    This diagram shows how the Detector of Albedo Neutrons could be used to sense the presence of subsurface water on Mars.

    DAN, located near the back of Curiosity's main body, will help the rover search for ice and water-logged minerals beneath the Martian surface.

    The instrument will fire beams of neutrons at the ground, then note the speed at which these particles travel when they bounce back. Hydrogen atoms tend to slow neutrons down, so an abundance of sluggish neutrons would signal underground water or ice.

    DAN should be able to map out water concentrations as low as 0.1 percent at depths up to 6 feet (2 m).

  • Radiation Assessment Detector (RAD)

    NASA / JPL-Caltech
    The RAD instrument is mounted just below the Curiosity rover's top deck, with the charged particle telescope pointing toward the zenith.

    The toaster-size RAD is designed specifically to help prepare for future human exploration of Mars. The instrument will measure and identify high-energy radiation of all types on the Red Planet, from fast-moving protons to gamma rays.

    RAD's observations will allow scientists to determine just how much radiation an astronaut would be exposed to on Mars. This information could also help researchers understand how much of a hurdle Mars' radiation environment might have posed to the origin and evolution of life on the Red Planet.

  • Rover Environmental Monitoring Station (REMS)

    NASA
    This diagram shows the location of the REMS booms on the rover's mast, plus detailed views showing the location of wind, humidity and temperature sensors.

    This tool, which sits partway up Curiosity's mast, is a Martian weather station. REMS will measure atmospheric pressure, humidity, wind speed and direction, air temperature, ground temperature and ultraviolet radiation.

    All of this information will be integrated into daily and seasonal reports, allowing scientists to get a detailed look at the Martian environment.

  • MSL Entry, Descent and Landing Instrumentation (MEDLI)

    Lockheed Martin
    The MEDLI instrument package is the black box in the middle left of this photo, which shows the heatshield for the Mars Science Laboratory.

    MEDLI isn't one of Curiosity's 10 instruments, since it was built into the heat shield that protected the rover during its descent through the Martian atmosphere. But it's worth a few words here.

    MEDLI measured the temperatures and pressures that the heat shield experienced as the MSL spacecraft streaked through the Martian sky. This information can tell engineers how well the heat shield, and their models of the spacecraft's trajectory, performed.

    Researchers will use MEDLI data to improve designs for future Mars-bound spacecraft.

    You can follow Space.com senior writer Mike Wall on Twitter: @michaeldwall. Follow Space.com for the latest in space science and exploration news on Twitter @Spacedotcom and on Facebook.

  • More from Space.com:

Video: How NASA's probe will get to Mars

Discuss:

Discussion comments

,

Most active discussions

  1. votes comments
  2. votes comments
  3. votes comments
  4. votes comments