Image: First image from Gemini South's new adaptive optics
Gemini Observatory/AURA
The first image from Gemini South's new adaptive optics captures a view of the globular star cluster NGC 288. As shown on the left, with classical adaptive optics, the images are blurred due to turbulence in the atmosphere. Gemini South uses a system with five laser-created guide stars to subtract out the distortions, resulting in a clearer, sharper image.
updated 1/20/2012 2:23:29 PM ET 2012-01-20T19:23:29

Stars viewed by an observatory in South America have just lost their twinkle. Images from this ground-based telescope are brighter and clearer than ever before, thanks to a new instrument on the Gemini South observatory that reduces the blurring, or twinkle, caused by Earth's atmosphere.

Earth's atmosphere may create beautiful sunsets, but the movement of warm and cold gases makes seeing distant astronomical sources a challenge. By relying on a combination of light-wave sensors and deformable mirrors known as adaptive optics (AO), astronomers have been able to subtract out the turbulence, improving their images.

  1. Space news from
    1. KARE
      Teen's space mission fueled by social media

      Science editor Alan Boyle's blog: "Astronaut Abby" is at the controls of a social-media machine that is launching the 15-year-old from Minnesota to Kazakhstan this month for the liftoff of the International Space Station's next crew.

    2. Buzz Aldrin's vision for journey to Mars
    3. Giant black hole may be cooking up meals
    4. Watch a 'ring of fire' solar eclipse online

Numerous telescopes have already been fitted with adaptive optics systems, but a recent upgrade to the Gemini South telescope, located in Chile, takes adaptive optics to a new level.

Gemini is a collaboration between seven member countries: the United States, the United Kingdom, Canada, Chile, Australia, Brazil and Argentina.

Some proponents of the telescope are hoping the new system will help pull the observatory out of a productivity rut, according to Nature News. Compared to other facilities of comparable size, such as Subaru and Keck of Hawaii, and the Very Large Telescope in Chile, Gemini has produced significantly fewer scientific papers every year since 2005, Nature News reported. However, its groundbreaking new optics system could change that.

Laser stars
Like many other systems, the Gemini Multi-conjugate Adaptive Optics System, or GeMS, doesn't rely on luck to provide it with an ideal star to calibrate its measurements — it uses lasers to make its own.

Unlike other systems, GeMs doesn't trust its measurements to just one guide star. Instead it uses a technique called Multi-Conjugate Adaptive Optics (MCAO) to place four stars at the corners of its field of view and one in the middle. [ Video – Twinkle No More: Lasers Clear Up Star View ]

"We use laser guide stars instead of natural guide stars because it's very difficult to find several bright stars in the patch that can be handled by MCAO," Francois Rigaut, Gemini Adaptive Optics senior scientist, told in an email. "The probability is basically zero."

By determining how much the laser guide stars have blurred and changed, astronomers can calculate the atmospheric turbulence that makes the stars and other distant sources twinkle, and remove the distortions from the data.

'Hubble-quality' images
The resulting images are a significant improvement over previous ground-based images, the researchers said. In a statement, Rigaut calls Gemini's new photos "Hubble-quality," a significant step for a telescope stuck on Earth.

"Large ground-based telescopes plus AO can provide a very attractive alternative to space, especially in the near-infrared," Rigaut said. "AO from the ground is several order of magnitudes cheaper than sending telescopes into space."

But that doesn't mean that Gemini South will put the space-based telescopes out of a job.

In addition to causing twinkling stars, Earth's atmosphere also blocks light in the ultraviolet wavelength and some infrared bands. Yet some of the universe's most interesting processes are only visible in these types of light, which can't be seen from the ground.

"What is filtered can never be recovered," Rigaut said.

And adaptive optics does not yet work well with light in the visible range, so Gemini won't be bringing home the beautiful optical images the Hubble is famous for. [ Spectacular Photos From the Revamped Hubble Space Telescope ]

"Space is not replaceable for many things," Rigaut cautioned.

But in the wavelengths that adaptive optics works for, GeMS excels.

All telescopes are limited by the amount of what Rigaut calls "detector real estate."

"Whether you are in space or on the ground, you are mostly limited by the number of pixels you can put behind your telescope, or telescope-plus-AO-system," he said. "There, we're about on par with space."

Paving the way
The Gemini telescope's new optics could help pave the way for better quality images from all branches of astronomy, including stellar evolution, star formation in nearby galaxies, black holes, and the study of the movement and composition of distant galaxies. GeMS can also provide more precise weather monitoring on Mars and Jupiter from the surface of Earth.

And such a system isn't limited only to Gemini South.

"The principle is generic and can be used on any ground-based telescope," Rigaut explained.

So although GeMS is specifically designed for Gemini, other telescopes should be able to use a similar process. According to Rigaut, the Thirty Meter Telescope being planned for Hawaii, and the European Southern Observatory's European Extremely Large Telescope intended for Chile both have MCAO systems in the works.

Pretty soon, the familiar children's song may need a new refrain.

Follow for the latest in space science and exploration news on Twitter @Spacedotcomand on Facebook.

© 2013 All rights reserved. More from

Photos: Month in Space: January 2014

loading photos...
  1. Southern stargazing

    Stars, galaxies and nebulas dot the skies over the European Southern Observatory's La Silla Paranal Observatory in Chile, in a picture released on Jan. 7. This image also shows three of the four movable units that feed light into the Very Large Telescope Interferometer, the world's most advanced optical instrument. Combining to form one larger telescope, they are greater than the sum of their parts: They reveal details that would otherwise be visible only through a telescope as large as the distance between them. (Y. Beletsky / ESO) Back to slideshow navigation
  2. A balloon's view

    Cameras captured the Grandville High School RoboDawgs' balloon floating through Earth's upper atmosphere during its ascent on Dec. 28, 2013. The Grandville RoboDawgs’ first winter balloon launch reached an estimated altitude of 130,000 feet, or about 25 miles, according to coaches Mike Evele and Doug Hepfer. It skyrocketed past the team’s previous 100,000-feet record set in June. The RoboDawgs started with just one robotics team in 1998, but they've grown to support more than 30 teams at public schools in Grandville, Mich. (Kyle Moroney / AP) Back to slideshow navigation
  3. Spacemen at work

    Russian cosmonauts Oleg Kotov, right, and Sergey Ryazanskiy perform maintenance on the International Space Station on Jan. 27. During the six-hour, eight-minute spacewalk, Kotov and Ryazanskiy completed the installation of a pair of high-fidelity cameras that experienced connectivity issues during a Dec. 27 spacewalk. The cosmonauts also retrieved scientific gear outside the station's Russian segment. (NASA) Back to slideshow navigation
  4. Special delivery

    The International Space Station's Canadian-built robotic arm moves toward Orbital Sciences Corp.'s Cygnus autonomous cargo craft as it approaches the station for a Jan. 12 delivery. The mountains below are the southwestern Alps. (NASA) Back to slideshow navigation
  5. Accidental art

    A piece of art? A time-lapse photo? A flickering light show? At first glance, this image looks nothing like the images we're used to seeing from the Hubble Space Telescope. But it's a genuine Hubble frame that was released on Jan. 27. Hubble's team suspects that the telescope's Fine Guidance System locked onto a bad guide star, potentially a double star or binary. This caused an error in the tracking system, resulting in a remarkable picture of brightly colored stellar streaks. The prominent red streaks are from stars in the globular cluster NGC 288. (NASA / ESA) Back to slideshow navigation
  6. Supersonic test flight

    A camera looking back over Virgin Galactic's SpaceShipTwo's fuselage shows the rocket burn with a Mojave Desert vista in the background during a test flight of the rocket plane on Jan. 10. Cameras were mounted on the exterior of SpaceShipTwo as well as its carrier airplane, WhiteKnightTwo, to monitor the rocket engine's performance. The test was aimed at setting the stage for honest-to-goodness flights into outer space later this year, and eventual commercial space tours.

    More about SpaceShipTwo on PhotoBlog (Virgin Galactic) Back to slideshow navigation
  7. Red lagoon

    The VLT Survey Telescope at the European Southern Observatory's Paranal Observatory in Chile captured this richly detailed new image of the Lagoon Nebula, released on Jan. 22. This giant cloud of gas and dust is creating intensely bright young stars, and is home to young stellar clusters. This image is a tiny part of just one of 11 public surveys of the sky now in progress using ESO telescopes. (ESO/VPHAS team) Back to slideshow navigation
  8. Fire on the mountain

    This image provided by NASA shows a satellite view of smoke from the Colby Fire, taken by the Multi-angle Imaging SpectroRadiometer aboard NASA's Terra spacecraft as it passed over Southern California on Jan. 16. The fire burned more than 1,863 acres and forced the evacuation of 3,700 people. (NASA via AP) Back to slideshow navigation
  9. Where stars are born

    An image captured by NASA's Spitzer Space Telescope shows the Orion Nebula, an immense stellar nursery some 1,500 light-years away. This false-color infrared view, released on Jan. 15, spans about 40 light-years across the region. The brightest portion of the nebula is centered on Orion's young, massive, hot stars, known as the Trapezium Cluster. But Spitzer also can detect stars still in the process of formation, seen here in red hues. (NASA / JPL-Caltech) Back to slideshow navigation
  10. Cygnus takes flight

    Orbital Sciences Corp.'s Antares rocket rises from NASA's Wallops Flight Facility on Wallops Island, Va, on Jan. 9. The rocket sent Orbital's Cygnus cargo capsule on its first official resupply mission to the International Space Station. (Chris Perry / NASA) Back to slideshow navigation
  11. A long, long time ago...

    This long-exposure picture from the Hubble Space Telescope, released Jan. 8, is the deepest image ever made of any cluster of galaxies. The cluster known as Abell 2744 appears in the foreground. It contains several hundred galaxies as they looked 3.5 billion years ago. Abell 2744 acts as a gravitational lens to warp space, brightening and magnifying images of nearly 3,000 distant background galaxies. The more distant galaxies appear as they did more than 12 billion years ago, not long after the Big Bang. (NASA / NASA via AFP - Getty Images) Back to slideshow navigation
  12. Frosty halo

    Sun dogs are bright spots that appear in the sky around the sun when light is refracted through ice crystals in the atmosphere. These sun dogs appeared on Jan. 5 amid brutally cold temperatures along Highway 83, north of Bismarck, N.D. The temperature was about 22 degrees below zero Fahrenheit, with a 50-below-zero wind chill.

    Slideshow: The Year in Space (Brian Peterson / The Bismarck Tribune via AP) Back to slideshow navigation
  1. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  2. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  3. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  4. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.


Discussion comments


Most active discussions

  1. votes comments
  2. votes comments
  3. votes comments
  4. votes comments