J. McKean and M. Wise, ASTRON
The giant LOFAR radio telescope network will be used, among other things, to take a close look at giant black holes like the one at the heart of active galaxy Cygnus A (shown here), which is about 700 million light-years from Earth. This image from LOFAR shows plasma jets from the black hole that stretch 2,000 light-years from the core of Cygnus A.
By
updated 1/31/2012 11:22:16 AM ET 2012-01-31T16:22:16

More than 20,000 radio antennas will soon connect over the Internet to scan largely unexplored radio frequencies, hunting for the first stars and galaxies and potentially signals of extraterrestrial intelligence.

The Low Frequency Array (LOFAR) will consist of banks of antennas in 48 stations in the Netherlands and elsewhere in Europe, all hooked up by fiber optic cables. Signals from these stations will be combined using a supercomputer, transforming the array into "perhaps the most complex and versatile radio telescope ever attempted," said Heino Falcke, chairman of the board for the International LOFAR Telescope.

Currently 16,000 of LOFAR's antennas and 41 of its stations are up, and the array will be completed by the middle of this year. All told, LOFAR will have a resolution equivalent to a telescope 620 miles (1,000 kilometers) in diameter. In addition, "it's an expandable design — we can always come along later and add additional stations," said Michael Wise at ASTRON, the Netherlands Institute for Radio Astronomy.

Since LOFAR is so large, it can scan large parts of the heavens — its first all-sky survey, which started Jan. 9, can sweep across "the entire northern sky twice in just 45 days," said George Heald of ASTRON.

LOFAR is also very fast, capable of measuring events only five-billionths of a second long. In addition, the fact that LOFAR is essentially many different radio telescopes knit together means it can run, say, three different science projects simultaneously, Wise said.

The array is designed to monitor low-frequency radio waves, a largely unexplored part of radiation from the sky. One critical source of these radio emissions are extremely feeble signals from the cold hydrogen gas that dominated the cosmos during the so-called dark ages of the universe. As stars eventually came into being, they would have left scars on this hydrogen, and by analyzing how the radio signals from this gas changed over time, scientists can therefore learn much about how the first galaxies came to be.  [Infographic Tour: History & Structure of the Universe]

"This is a pivotal phase in the early evolution of the universe, stretching from 400 million to 800 million years after the Big Bang," said Ger de Bruyn of ASTRON. "We'd like to know when exactly it happened, how it happened, how fast it happened."

LOFAR will also scan for artificial radio emissions as part of the search for extraterrestrial intelligence (SETI). Past SETI missions focused on higher frequency radio waves, but perhaps alien civilizations preferred lower frequencies.

"LOFAR can do interesting SETI experiments," Falcke told Space.com. "In the next couple of years, we'll be trying it."

  1. Space news from NBCNews.com
    1. KARE
      Teen's space mission fueled by social media

      Science editor Alan Boyle's blog: "Astronaut Abby" is at the controls of a social-media machine that is launching the 15-year-old from Minnesota to Kazakhstan this month for the liftoff of the International Space Station's next crew.

    2. Buzz Aldrin's vision for journey to Mars
    3. Giant black hole may be cooking up meals
    4. Watch a 'ring of fire' solar eclipse online

Low-frequency radio waves are also emitted around intensely powerful cosmic objects such as black holes, and investigating these could help scientists better understand the inner workings of these ferocious systems. For instance, when it comes to pulsars — the highly magnetized and rapidly rotating neutron stars that can form after supernovas — LOFAR can monitor radio emissions from within about 60 miles (100 kilometers) of the pulsar's surface, said Jason Hessels of ASTRON.

LOFAR will open its capabilities to astronomers internationally starting in May. Scientists at LOFAR detailed their work earlier this month at the 219th annual meeting of the American Astronomical Society in Austin, Texas.

Follow Space.com for the latest in space science and exploration news on Twitter @Spacedotcom and on Facebook.

© 2013 Space.com. All rights reserved. More from Space.com.

Photos: Month in Space: January 2014

loading photos...
  1. Southern stargazing

    Stars, galaxies and nebulas dot the skies over the European Southern Observatory's La Silla Paranal Observatory in Chile, in a picture released on Jan. 7. This image also shows three of the four movable units that feed light into the Very Large Telescope Interferometer, the world's most advanced optical instrument. Combining to form one larger telescope, they are greater than the sum of their parts: They reveal details that would otherwise be visible only through a telescope as large as the distance between them. (Y. Beletsky / ESO) Back to slideshow navigation
  2. A balloon's view

    Cameras captured the Grandville High School RoboDawgs' balloon floating through Earth's upper atmosphere during its ascent on Dec. 28, 2013. The Grandville RoboDawgs’ first winter balloon launch reached an estimated altitude of 130,000 feet, or about 25 miles, according to coaches Mike Evele and Doug Hepfer. It skyrocketed past the team’s previous 100,000-feet record set in June. The RoboDawgs started with just one robotics team in 1998, but they've grown to support more than 30 teams at public schools in Grandville, Mich. (Kyle Moroney / AP) Back to slideshow navigation
  3. Spacemen at work

    Russian cosmonauts Oleg Kotov, right, and Sergey Ryazanskiy perform maintenance on the International Space Station on Jan. 27. During the six-hour, eight-minute spacewalk, Kotov and Ryazanskiy completed the installation of a pair of high-fidelity cameras that experienced connectivity issues during a Dec. 27 spacewalk. The cosmonauts also retrieved scientific gear outside the station's Russian segment. (NASA) Back to slideshow navigation
  4. Special delivery

    The International Space Station's Canadian-built robotic arm moves toward Orbital Sciences Corp.'s Cygnus autonomous cargo craft as it approaches the station for a Jan. 12 delivery. The mountains below are the southwestern Alps. (NASA) Back to slideshow navigation
  5. Accidental art

    A piece of art? A time-lapse photo? A flickering light show? At first glance, this image looks nothing like the images we're used to seeing from the Hubble Space Telescope. But it's a genuine Hubble frame that was released on Jan. 27. Hubble's team suspects that the telescope's Fine Guidance System locked onto a bad guide star, potentially a double star or binary. This caused an error in the tracking system, resulting in a remarkable picture of brightly colored stellar streaks. The prominent red streaks are from stars in the globular cluster NGC 288. (NASA / ESA) Back to slideshow navigation
  6. Supersonic test flight

    A camera looking back over Virgin Galactic's SpaceShipTwo's fuselage shows the rocket burn with a Mojave Desert vista in the background during a test flight of the rocket plane on Jan. 10. Cameras were mounted on the exterior of SpaceShipTwo as well as its carrier airplane, WhiteKnightTwo, to monitor the rocket engine's performance. The test was aimed at setting the stage for honest-to-goodness flights into outer space later this year, and eventual commercial space tours.

    More about SpaceShipTwo on PhotoBlog (Virgin Galactic) Back to slideshow navigation
  7. Red lagoon

    The VLT Survey Telescope at the European Southern Observatory's Paranal Observatory in Chile captured this richly detailed new image of the Lagoon Nebula, released on Jan. 22. This giant cloud of gas and dust is creating intensely bright young stars, and is home to young stellar clusters. This image is a tiny part of just one of 11 public surveys of the sky now in progress using ESO telescopes. (ESO/VPHAS team) Back to slideshow navigation
  8. Fire on the mountain

    This image provided by NASA shows a satellite view of smoke from the Colby Fire, taken by the Multi-angle Imaging SpectroRadiometer aboard NASA's Terra spacecraft as it passed over Southern California on Jan. 16. The fire burned more than 1,863 acres and forced the evacuation of 3,700 people. (NASA via AP) Back to slideshow navigation
  9. Where stars are born

    An image captured by NASA's Spitzer Space Telescope shows the Orion Nebula, an immense stellar nursery some 1,500 light-years away. This false-color infrared view, released on Jan. 15, spans about 40 light-years across the region. The brightest portion of the nebula is centered on Orion's young, massive, hot stars, known as the Trapezium Cluster. But Spitzer also can detect stars still in the process of formation, seen here in red hues. (NASA / JPL-Caltech) Back to slideshow navigation
  10. Cygnus takes flight

    Orbital Sciences Corp.'s Antares rocket rises from NASA's Wallops Flight Facility on Wallops Island, Va, on Jan. 9. The rocket sent Orbital's Cygnus cargo capsule on its first official resupply mission to the International Space Station. (Chris Perry / NASA) Back to slideshow navigation
  11. A long, long time ago...

    This long-exposure picture from the Hubble Space Telescope, released Jan. 8, is the deepest image ever made of any cluster of galaxies. The cluster known as Abell 2744 appears in the foreground. It contains several hundred galaxies as they looked 3.5 billion years ago. Abell 2744 acts as a gravitational lens to warp space, brightening and magnifying images of nearly 3,000 distant background galaxies. The more distant galaxies appear as they did more than 12 billion years ago, not long after the Big Bang. (NASA / NASA via AFP - Getty Images) Back to slideshow navigation
  12. Frosty halo

    Sun dogs are bright spots that appear in the sky around the sun when light is refracted through ice crystals in the atmosphere. These sun dogs appeared on Jan. 5 amid brutally cold temperatures along Highway 83, north of Bismarck, N.D. The temperature was about 22 degrees below zero Fahrenheit, with a 50-below-zero wind chill.

    Slideshow: The Year in Space (Brian Peterson / The Bismarck Tribune via AP) Back to slideshow navigation
  1. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  2. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  3. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  4. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

Discuss:

Discussion comments

,

Most active discussions

  1. votes comments
  2. votes comments
  3. votes comments
  4. votes comments