Image: Artist's concept of Hayabusa 2 spacecraft
JAXA/Akihiro Ikeshita
Artist's concept of Japan’s proposed Hayabusa 2 spacecraft, which would reconnoiter asteroid 1999 JU3 in mid-2018. Hayabusa 2 would hurl an impactor into the asteroid, sample the resulting crater and send pieces back to Earth for study.
updated 3/5/2012 1:07:20 PM ET 2012-03-05T18:07:20

Space engineers in Japan are scoping out an ambitious follow-up to the country's Hayabusa mission, which snagged samples from the asteroid Itokawa and returned them to Earth in 2010.

The successor spacecraft, known as Hayabusa 2, would carry out an aggressive study of another asteroid. The probe would drop off two landers, blast the asteroid with an impactor and send more samples back to Earth for close-up inspection.

Earlier this year, Tokyo-based NEC Corporation announced it had started designing the new asteroid explorer for the Japan Aerospace Exploration Agency (JAXA).

  1. Space news from
    1. KARE
      Teen's space mission fueled by social media

      Science editor Alan Boyle's blog: "Astronaut Abby" is at the controls of a social-media machine that is launching the 15-year-old from Minnesota to Kazakhstan this month for the liftoff of the International Space Station's next crew.

    2. Buzz Aldrin's vision for journey to Mars
    3. Giant black hole may be cooking up meals
    4. Watch a 'ring of fire' solar eclipse online

Liftoff: 2014
The plan now calls for the Hayabusa 2 spacecraft to be launched in late 2014. The object targeted is 1999 JU3, a carbonaceous or C-type asteroid. [ Photos: Asteroids in Deep Space ]

The probe’s key mission is to collect and return samples from that rocky world, to help scientists better understand the origin and evolution of the solar system.

Hayabusa 2, propelled by an ion engine, would arrive at the asteroid in mid-2018, conduct a series of observations and operations and then return to Earth by the end of 2020.

The total cost of the mission is pegged at about $400 million — $150 million more than the original Hayabusa.  

The budget boost is not surprising since Hayabusa 2 is going to be launched on Japan’s H2A rocket, which is larger than the M-V rocket used for Hayabusa. The new probe would also have a bigger payload and a longer operational stint, spending roughly one year at 1999 JU3 compared to Hayabusa’s three months of inspecting Itokawa.

The first Hayabusa
"It’s a much more scientifically aggressive mission than the first Hayabusa. They are applying all the lessons learned from that mission to Hayabusa 2," said Paul Abell, lead scientist for planetary small bodies in the Astromaterials Research & Exploration Science Directorate at NASA's Johnson Space Center in Houston. He was a joint science team member on the Hayabusa mission.

The original Hayabusa was launched in May 2003 and reached Itokawa in mid-September 2005. Despite a sampling glitch, the craft managed to return to Earth a precious cargo of ultra-tiny grains of asteroid material. [ Photos from the Hayabusa Mission ]

Those prized extraterrestrial specimens were parachuted into the Australian outback in June 2010. Some of the bits and pieces are being distributed to researchers around the world.

Hayabusa overcame a series of glitches to make a victorious back-and-forth sojourn, and it has thus been heralded as a robotic version of NASA's famous Apollo 13 mission. But in this case, it was more appropriate to say, "Sagamihara, we’ve got a problem."

Asteroid landers
Abell told that Hayabusa 2 is basically a copycat version of its older sister ship, but with greater capabilities. There’s more redundancy, for one, as well as improved software for autonomous navigation, guidance and control.

Hayabusa 2 will involve international collaborations with Germany, the United States, Australia, and other countries.

One new technical feature is that Hayabusa 2 will tote two landers to the asteroid instead of one. One will be a version of the detachable MIcro/Nano Experimental Robot Vehicle for Asteroid (MINERVA). This tiny lander was on the first Hayabusa as well, but it missed its mark, drifting off into space after being deployed too high above Itokawa.

This time, joining the MINERVA-like lander is MASCOT (Mobile Asteroid Surface Scout), a small separate landing package developed by the German Aerospace Center.

"MASCOT will take some measurements, then move to a different location and take more readings," Abell said.

Unique to Hayabusa 2 is its impactor system. Deployed from the mothership, the impactor will slam into the asteroid and blast out a crater. A deployed standalone camera package will watch the high-speed crash.

While all of this is under way, Hayabusa 2 will slip behind the limb of the asteroid.

"They don’t want to be anywhere near the event with respect to the mothership," Abell said. "The ejecta from the impact might interfere with spacecraft systems."

Once Hayabusa 2 is back around the asteroid, it will relay to Earth detailed imagery of the crater.

"So they’d have a really good idea of the actual impact event itself, the crater formation and the ejecta pattern from that hypervelocity impact," Abell told

Also on the agenda for Hayabusa 2 is to attempt a pinpoint landing at the newly created crater and sample that site, again sifting up material for transport back to Earth.

Sweet-spot samples
Hayabusa 2’s ability to suck up specimens is greater than what the first Hayabusa was capable of — and that gear failed to operate properly. Hayabusa 2 is designed to come back home to planet Earth with three different samples: two prior to the impact event and one post-impact.

"They are very optimistic that they will be able to return much more sample than they have in the original Hayabusa mission. It should be very interesting to see what they bring back," Abell said. "No matter where we go … we’re surprised at what we find."

Abell said scientists and laypeople in Japan and around the world were enthralled with the first Hayabusa mission. It was relatively inexpensive and had a high scientific payoff. Hayabusa 2 is being designed in the same vein.

"What you are starting to see is recognition that missions to near-Earth objects are very attractive," Abell added. Asteroids are interesting for many reasons, cutting across both science and space exploration. Some scientists and entrepreneurs advocate mining asteroids someday, since they harbor vast stores of potentially valuable resources, including water, iron and platinum.

And many researchers stress that we need to learn more about space rocks, since a big one is bound to strike Earth again sometime in the future.

The payoff from this type of asteroid research is valuable "in terms of how to deal with something that may have our name on it in the future," Abell said.

Leonard David has been reporting on the space industry for more than five decades. He is a winner of last year's National Space Club Press Award and a past editor-in-chief of the National Space Society's Ad Astra and Space World magazines. He has written for since 1999.

© 2013 All rights reserved. More from

Photos: Month in Space: January 2014

loading photos...
  1. Southern stargazing

    Stars, galaxies and nebulas dot the skies over the European Southern Observatory's La Silla Paranal Observatory in Chile, in a picture released on Jan. 7. This image also shows three of the four movable units that feed light into the Very Large Telescope Interferometer, the world's most advanced optical instrument. Combining to form one larger telescope, they are greater than the sum of their parts: They reveal details that would otherwise be visible only through a telescope as large as the distance between them. (Y. Beletsky / ESO) Back to slideshow navigation
  2. A balloon's view

    Cameras captured the Grandville High School RoboDawgs' balloon floating through Earth's upper atmosphere during its ascent on Dec. 28, 2013. The Grandville RoboDawgs’ first winter balloon launch reached an estimated altitude of 130,000 feet, or about 25 miles, according to coaches Mike Evele and Doug Hepfer. It skyrocketed past the team’s previous 100,000-feet record set in June. The RoboDawgs started with just one robotics team in 1998, but they've grown to support more than 30 teams at public schools in Grandville, Mich. (Kyle Moroney / AP) Back to slideshow navigation
  3. Spacemen at work

    Russian cosmonauts Oleg Kotov, right, and Sergey Ryazanskiy perform maintenance on the International Space Station on Jan. 27. During the six-hour, eight-minute spacewalk, Kotov and Ryazanskiy completed the installation of a pair of high-fidelity cameras that experienced connectivity issues during a Dec. 27 spacewalk. The cosmonauts also retrieved scientific gear outside the station's Russian segment. (NASA) Back to slideshow navigation
  4. Special delivery

    The International Space Station's Canadian-built robotic arm moves toward Orbital Sciences Corp.'s Cygnus autonomous cargo craft as it approaches the station for a Jan. 12 delivery. The mountains below are the southwestern Alps. (NASA) Back to slideshow navigation
  5. Accidental art

    A piece of art? A time-lapse photo? A flickering light show? At first glance, this image looks nothing like the images we're used to seeing from the Hubble Space Telescope. But it's a genuine Hubble frame that was released on Jan. 27. Hubble's team suspects that the telescope's Fine Guidance System locked onto a bad guide star, potentially a double star or binary. This caused an error in the tracking system, resulting in a remarkable picture of brightly colored stellar streaks. The prominent red streaks are from stars in the globular cluster NGC 288. (NASA / ESA) Back to slideshow navigation
  6. Supersonic test flight

    A camera looking back over Virgin Galactic's SpaceShipTwo's fuselage shows the rocket burn with a Mojave Desert vista in the background during a test flight of the rocket plane on Jan. 10. Cameras were mounted on the exterior of SpaceShipTwo as well as its carrier airplane, WhiteKnightTwo, to monitor the rocket engine's performance. The test was aimed at setting the stage for honest-to-goodness flights into outer space later this year, and eventual commercial space tours.

    More about SpaceShipTwo on PhotoBlog (Virgin Galactic) Back to slideshow navigation
  7. Red lagoon

    The VLT Survey Telescope at the European Southern Observatory's Paranal Observatory in Chile captured this richly detailed new image of the Lagoon Nebula, released on Jan. 22. This giant cloud of gas and dust is creating intensely bright young stars, and is home to young stellar clusters. This image is a tiny part of just one of 11 public surveys of the sky now in progress using ESO telescopes. (ESO/VPHAS team) Back to slideshow navigation
  8. Fire on the mountain

    This image provided by NASA shows a satellite view of smoke from the Colby Fire, taken by the Multi-angle Imaging SpectroRadiometer aboard NASA's Terra spacecraft as it passed over Southern California on Jan. 16. The fire burned more than 1,863 acres and forced the evacuation of 3,700 people. (NASA via AP) Back to slideshow navigation
  9. Where stars are born

    An image captured by NASA's Spitzer Space Telescope shows the Orion Nebula, an immense stellar nursery some 1,500 light-years away. This false-color infrared view, released on Jan. 15, spans about 40 light-years across the region. The brightest portion of the nebula is centered on Orion's young, massive, hot stars, known as the Trapezium Cluster. But Spitzer also can detect stars still in the process of formation, seen here in red hues. (NASA / JPL-Caltech) Back to slideshow navigation
  10. Cygnus takes flight

    Orbital Sciences Corp.'s Antares rocket rises from NASA's Wallops Flight Facility on Wallops Island, Va, on Jan. 9. The rocket sent Orbital's Cygnus cargo capsule on its first official resupply mission to the International Space Station. (Chris Perry / NASA) Back to slideshow navigation
  11. A long, long time ago...

    This long-exposure picture from the Hubble Space Telescope, released Jan. 8, is the deepest image ever made of any cluster of galaxies. The cluster known as Abell 2744 appears in the foreground. It contains several hundred galaxies as they looked 3.5 billion years ago. Abell 2744 acts as a gravitational lens to warp space, brightening and magnifying images of nearly 3,000 distant background galaxies. The more distant galaxies appear as they did more than 12 billion years ago, not long after the Big Bang. (NASA / NASA via AFP - Getty Images) Back to slideshow navigation
  12. Frosty halo

    Sun dogs are bright spots that appear in the sky around the sun when light is refracted through ice crystals in the atmosphere. These sun dogs appeared on Jan. 5 amid brutally cold temperatures along Highway 83, north of Bismarck, N.D. The temperature was about 22 degrees below zero Fahrenheit, with a 50-below-zero wind chill.

    Slideshow: The Year in Space (Brian Peterson / The Bismarck Tribune via AP) Back to slideshow navigation
  1. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  2. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  3. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  4. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.


Discussion comments


Most active discussions

  1. votes comments
  2. votes comments
  3. votes comments
  4. votes comments