Image: McNeil's Nebula
ESA/NASA Goddard Space Flight Center
During its outbursts, the infant star V1647 Orionis illuminated McNeil's Nebula. In this artistic rendering, magnetic fields drive powerful flows onto the star, creating two hot spots that produce the high-energy emission.
updated 7/13/2012 12:29:38 PM ET 2012-07-13T16:29:38

Using the X-ray eyes of three space telescopes, astronomers have captured a behind-the-scenes look at the dramatic behavior of a newborn sun-like star, as it spins rapidly and churns out powerful and long-lasting eruptions.

The infant star, called V1647 Orionis, is known as a protostar, and was formed by clouds of surrounding gas and dust. The star is located 1,300 light-years away in McNeil's Nebula, which is a bustling hotspot of star formation in the constellation of Orion.

V1647 rotates once each day, which is around 30 times faster than the sun, and has two active X-ray emitting spots, where gas flows from a surrounding disk and feeds the growing star.

  1. Space news from
    1. KARE
      Teen's space mission fueled by social media

      Science editor Alan Boyle's blog: "Astronaut Abby" is at the controls of a social-media machine that is launching the 15-year-old from Minnesota to Kazakhstan this month for the liftoff of the International Space Station's next crew.

    2. Buzz Aldrin's vision for journey to Mars
    3. Giant black hole may be cooking up meals
    4. Watch a 'ring of fire' solar eclipse online

The young star has intrigued astronomers since it erupted in 2004 and lit up McNeil's Nebula for two years, dying down in early 2006, the researchers said. The stellar newborn acted up again in 2008, and has remained bright ever since.

In a new study, astronomers studied the source of the high-energy emissions using three separate X-ray space telescopes: NASA's Chandra X-ray Observatory, the Japanese Suzaku satellite, and the European Space Agency's XMM-Newton.

The researchers began studying V1647 Orionis shortly after it erupted in 2004, and monitored it through 2010, capturing data from both outbursts.

"The observations give us a look inside the cradle at a very young star," study co-author Joel Kastner, a professor at Rochester Institute of Technology in Henrietta, N.Y., said in a statement. "It's as though we're able to see its beating heart. We're actually able to watch it rotate. We caught the star at a point where it is rotating so fast as it gains material that it's barely able to hold itself together. It's rotating at near break-up speed."

The researchers used the star's X-ray light curves to determine its spin, which makes V1647 one of the youngest stars whose spin has been determined using an X-ray based technique, they said. The scientists were also able to identify the object as a protostar that is still in the process of forming.

"Based on infrared studies, we suspect that this protostar is no more than a million years old, and probably much younger," study lead author Kenji Hamaguchi, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md., said in a statement.

V1647 is being fueled by gas from a surrounding disk, and could continue to grow this way for millions of years, before it is able to generate its own energy by fusing hydrogen into helium in its core, the way the sun and other mature stars do, the researchers explained. [ Top 10 Star Mysteries ]

Hamaguchi and his colleagues also studied two regions of V1647 that are emitting X-rays and are thousands of times hotter than the rest of the star. The two dynamic spots are located on opposite sides of the star, with the southerly one five times brighter than the other, the researchers said.

The newborn star's low density puffs it up to almost five times the size of the sun, making each of these hotspots sprawling birthmarks, measuring roughly the width of the sun.

During the star's extended eruptions, the researchers noted that V1647 gathers mass, spews plasma and X-rays, and exhibits a staggering increase in temperature.

"We think that magnetic activity on or around the stellar surface creates the super-hot plasma," Hamaguchi said. "This behavior could be sustained by the continual twisting, breaking, and reconnection of magnetic fields, which connect the star and the disk, but which rotate at different speeds. Magnetic activity on the stellar surface could also be caused by accretion of material onto it."

The X-ray emissions observed as the star rotates indicate that for its size, V1647 is spinning as fast as it can without shredding itself to pieces, the scientists said.

But despite the violent behavior witnessed from V1647 and the surrounding disk, the star appears to have been relatively stable since the researchers began studying it in 2004. The research combining observations from multiple X-ray satellites is expected to give astronomers better insight into what may be happening inside the dust-cloaked disks of young stars.

The detailed results of the study are published in the July 20 edition of the Astrophysical Journal.

Follow on Twitter @Spacedotcom. We're also on Facebook and Google+.

© 2013 All rights reserved. More from

Photos: Month in Space: January 2014

loading photos...
  1. Southern stargazing

    Stars, galaxies and nebulas dot the skies over the European Southern Observatory's La Silla Paranal Observatory in Chile, in a picture released on Jan. 7. This image also shows three of the four movable units that feed light into the Very Large Telescope Interferometer, the world's most advanced optical instrument. Combining to form one larger telescope, they are greater than the sum of their parts: They reveal details that would otherwise be visible only through a telescope as large as the distance between them. (Y. Beletsky / ESO) Back to slideshow navigation
  2. A balloon's view

    Cameras captured the Grandville High School RoboDawgs' balloon floating through Earth's upper atmosphere during its ascent on Dec. 28, 2013. The Grandville RoboDawgs’ first winter balloon launch reached an estimated altitude of 130,000 feet, or about 25 miles, according to coaches Mike Evele and Doug Hepfer. It skyrocketed past the team’s previous 100,000-feet record set in June. The RoboDawgs started with just one robotics team in 1998, but they've grown to support more than 30 teams at public schools in Grandville, Mich. (Kyle Moroney / AP) Back to slideshow navigation
  3. Spacemen at work

    Russian cosmonauts Oleg Kotov, right, and Sergey Ryazanskiy perform maintenance on the International Space Station on Jan. 27. During the six-hour, eight-minute spacewalk, Kotov and Ryazanskiy completed the installation of a pair of high-fidelity cameras that experienced connectivity issues during a Dec. 27 spacewalk. The cosmonauts also retrieved scientific gear outside the station's Russian segment. (NASA) Back to slideshow navigation
  4. Special delivery

    The International Space Station's Canadian-built robotic arm moves toward Orbital Sciences Corp.'s Cygnus autonomous cargo craft as it approaches the station for a Jan. 12 delivery. The mountains below are the southwestern Alps. (NASA) Back to slideshow navigation
  5. Accidental art

    A piece of art? A time-lapse photo? A flickering light show? At first glance, this image looks nothing like the images we're used to seeing from the Hubble Space Telescope. But it's a genuine Hubble frame that was released on Jan. 27. Hubble's team suspects that the telescope's Fine Guidance System locked onto a bad guide star, potentially a double star or binary. This caused an error in the tracking system, resulting in a remarkable picture of brightly colored stellar streaks. The prominent red streaks are from stars in the globular cluster NGC 288. (NASA / ESA) Back to slideshow navigation
  6. Supersonic test flight

    A camera looking back over Virgin Galactic's SpaceShipTwo's fuselage shows the rocket burn with a Mojave Desert vista in the background during a test flight of the rocket plane on Jan. 10. Cameras were mounted on the exterior of SpaceShipTwo as well as its carrier airplane, WhiteKnightTwo, to monitor the rocket engine's performance. The test was aimed at setting the stage for honest-to-goodness flights into outer space later this year, and eventual commercial space tours.

    More about SpaceShipTwo on PhotoBlog (Virgin Galactic) Back to slideshow navigation
  7. Red lagoon

    The VLT Survey Telescope at the European Southern Observatory's Paranal Observatory in Chile captured this richly detailed new image of the Lagoon Nebula, released on Jan. 22. This giant cloud of gas and dust is creating intensely bright young stars, and is home to young stellar clusters. This image is a tiny part of just one of 11 public surveys of the sky now in progress using ESO telescopes. (ESO/VPHAS team) Back to slideshow navigation
  8. Fire on the mountain

    This image provided by NASA shows a satellite view of smoke from the Colby Fire, taken by the Multi-angle Imaging SpectroRadiometer aboard NASA's Terra spacecraft as it passed over Southern California on Jan. 16. The fire burned more than 1,863 acres and forced the evacuation of 3,700 people. (NASA via AP) Back to slideshow navigation
  9. Where stars are born

    An image captured by NASA's Spitzer Space Telescope shows the Orion Nebula, an immense stellar nursery some 1,500 light-years away. This false-color infrared view, released on Jan. 15, spans about 40 light-years across the region. The brightest portion of the nebula is centered on Orion's young, massive, hot stars, known as the Trapezium Cluster. But Spitzer also can detect stars still in the process of formation, seen here in red hues. (NASA / JPL-Caltech) Back to slideshow navigation
  10. Cygnus takes flight

    Orbital Sciences Corp.'s Antares rocket rises from NASA's Wallops Flight Facility on Wallops Island, Va, on Jan. 9. The rocket sent Orbital's Cygnus cargo capsule on its first official resupply mission to the International Space Station. (Chris Perry / NASA) Back to slideshow navigation
  11. A long, long time ago...

    This long-exposure picture from the Hubble Space Telescope, released Jan. 8, is the deepest image ever made of any cluster of galaxies. The cluster known as Abell 2744 appears in the foreground. It contains several hundred galaxies as they looked 3.5 billion years ago. Abell 2744 acts as a gravitational lens to warp space, brightening and magnifying images of nearly 3,000 distant background galaxies. The more distant galaxies appear as they did more than 12 billion years ago, not long after the Big Bang. (NASA / NASA via AFP - Getty Images) Back to slideshow navigation
  12. Frosty halo

    Sun dogs are bright spots that appear in the sky around the sun when light is refracted through ice crystals in the atmosphere. These sun dogs appeared on Jan. 5 amid brutally cold temperatures along Highway 83, north of Bismarck, N.D. The temperature was about 22 degrees below zero Fahrenheit, with a 50-below-zero wind chill.

    Slideshow: The Year in Space (Brian Peterson / The Bismarck Tribune via AP) Back to slideshow navigation
  1. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  2. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  3. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  4. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.


Discussion comments


Most active discussions

  1. votes comments
  2. votes comments
  3. votes comments
  4. votes comments