Image: Planet Earth
NASA/GSFC/Suomi NPP
The 'blue marble' of earth gets a makeover in this view of the arctic as seen by the Suomi NPP satellite. Image released June 18, 2012.
updated 7/18/2012 12:31:26 PM ET 2012-07-18T16:31:26

Earth probably formed in a hotter, drier part of the solar system than previously thought, which could explain our planet's puzzling shortage of water, a new study reports.

Our newly forming solar system's "snow line" — the zone beyond which icy compounds could condense 4.5 billion years ago — was actually much farther away from the sun than prevailing theory predicts, according to the study.

"Unlike the standard accretion-disk model, the snow line in our analysis never migrates inside Earth's orbit," co-author Mario Livio, of the Space Telescope Science Institute (STScI) in Baltimore, said in a statement.

  1. Space news from NBCNews.com
    1. KARE
      Teen's space mission fueled by social media

      Science editor Alan Boyle's blog: "Astronaut Abby" is at the controls of a social-media machine that is launching the 15-year-old from Minnesota to Kazakhstan this month for the liftoff of the International Space Station's next crew.

    2. Buzz Aldrin's vision for journey to Mars
    3. Giant black hole may be cooking up meals
    4. Watch a 'ring of fire' solar eclipse online

"Instead, it remains farther from the sun than the orbit of Earth, which explains why our Earth is a dry planet," Livio added. "In fact, our model predicts that the other innermost planets — Mercury, Venus and Mars — are also relatively dry. " [ A Photo Tour of the Planets ]

Earth a dry planet?
Referring to Earth — with its vast oceans, huge rivers and polar ice caps — as a dry planet may sound strange. But water makes up less than 1 percent of our planet's mass, and much of that material was likely delivered by comets and asteroids after Earth's formation.

Scientists have long been puzzled by our planet's relative water deficiency, especially because Earth is thought to have coalesced from water-rich substances out beyond the snow line.

The snow line now lies in the middle of the asteroid belt between Mars and Jupiter, but conventional models suggest that it was much closer to the sun 4.5 billion years ago, when Earth and the other planets took shape.

"If the snow line was inside Earth's orbit when our planet formed, then it should have been an icy body," said co-author Rebecca Martin, also of STScI. "Planets such as Uranus and Neptune that formed beyond the snow line are composed of tens of percents of water. But Earth doesn't have much water, and that has always been a puzzle."

The new study, which has been accepted for publication in the journal Monthly Notices of the Royal Astronomical Society, may help solve the mystery.

Moving the snow line
In the prevailing model of how things happened 4.5 billion years ago, the protoplanetary disk around our newborn sun was fully ionized — meaning electrons in the region had been stripped off their parent atoms by powerful solar radiation.

Material from the disk fell onto the sun, the theory goes, heating the disk up. Initially, the snow line was far away from our star, perhaps 1 billion miles or more. (Earth orbits the sun at a distance of 93 million miles.)

But over time, according to the model, the protoplentary disk ran out of material and cooled. As a result, the snow line moved inward, past Earth's orbit, before our planet had a chance to form.

But Martin and Livio found some potential problems with this scenario. Specifically, they say that protoplanetary disks around young stars aren't fully ionized. 

"Very hot objects such as white dwarfs and X-ray sources release enough energy to ionize their accretion disks," Martin said. "But young stars don't have enough radiation or enough infalling material to provide the necessary energetic punch to ionize the disks."

Image: Diagram of Earth formation locations
NASA, ESA, and A. Feild (STScI)
Diagram showing proposed formation locations for Earth 4.5 billion years ago. Our planet may have formed inside the so-called "snow line," explaining why it's so dry.

A dead zone in the disk
If our solar system's disk wasn't ionized, its material would not have been funneled onto the young sun's surface, researchers said. Instead, gas and dust would simply have orbited around our star without moving inward, creating a so-called "dead zone" in the disk.

This dead zone would have acted as a plug, blocking matter from migrating toward the sun. Gas and dust would have piled up in the dead zone, increasing its density and causing it to heat up by gravitational compression.

This process, in turn, would have heated up the area outside the plug, vaporizing icy material and turning it into dry matter. Earth formed in this hotter region, whose dry matter became the building blocks of our planet, according to the new study.

While this new model could explain Earth's relative lack of water, it shouldn't be extended to all newly forming planetary systems, researchers said.

"Conditions within the disk will vary from star to star, and chance, as much as anything else, determined the precise end results for our Earth," Livio said.

Follow SPACE.com on Twitter @Spacedotcom. We're also on Facebook and Google+.

© 2013 Space.com. All rights reserved. More from Space.com.

Photos: Month in Space: January 2014

loading photos...
  1. Southern stargazing

    Stars, galaxies and nebulas dot the skies over the European Southern Observatory's La Silla Paranal Observatory in Chile, in a picture released on Jan. 7. This image also shows three of the four movable units that feed light into the Very Large Telescope Interferometer, the world's most advanced optical instrument. Combining to form one larger telescope, they are greater than the sum of their parts: They reveal details that would otherwise be visible only through a telescope as large as the distance between them. (Y. Beletsky / ESO) Back to slideshow navigation
  2. A balloon's view

    Cameras captured the Grandville High School RoboDawgs' balloon floating through Earth's upper atmosphere during its ascent on Dec. 28, 2013. The Grandville RoboDawgs’ first winter balloon launch reached an estimated altitude of 130,000 feet, or about 25 miles, according to coaches Mike Evele and Doug Hepfer. It skyrocketed past the team’s previous 100,000-feet record set in June. The RoboDawgs started with just one robotics team in 1998, but they've grown to support more than 30 teams at public schools in Grandville, Mich. (Kyle Moroney / AP) Back to slideshow navigation
  3. Spacemen at work

    Russian cosmonauts Oleg Kotov, right, and Sergey Ryazanskiy perform maintenance on the International Space Station on Jan. 27. During the six-hour, eight-minute spacewalk, Kotov and Ryazanskiy completed the installation of a pair of high-fidelity cameras that experienced connectivity issues during a Dec. 27 spacewalk. The cosmonauts also retrieved scientific gear outside the station's Russian segment. (NASA) Back to slideshow navigation
  4. Special delivery

    The International Space Station's Canadian-built robotic arm moves toward Orbital Sciences Corp.'s Cygnus autonomous cargo craft as it approaches the station for a Jan. 12 delivery. The mountains below are the southwestern Alps. (NASA) Back to slideshow navigation
  5. Accidental art

    A piece of art? A time-lapse photo? A flickering light show? At first glance, this image looks nothing like the images we're used to seeing from the Hubble Space Telescope. But it's a genuine Hubble frame that was released on Jan. 27. Hubble's team suspects that the telescope's Fine Guidance System locked onto a bad guide star, potentially a double star or binary. This caused an error in the tracking system, resulting in a remarkable picture of brightly colored stellar streaks. The prominent red streaks are from stars in the globular cluster NGC 288. (NASA / ESA) Back to slideshow navigation
  6. Supersonic test flight

    A camera looking back over Virgin Galactic's SpaceShipTwo's fuselage shows the rocket burn with a Mojave Desert vista in the background during a test flight of the rocket plane on Jan. 10. Cameras were mounted on the exterior of SpaceShipTwo as well as its carrier airplane, WhiteKnightTwo, to monitor the rocket engine's performance. The test was aimed at setting the stage for honest-to-goodness flights into outer space later this year, and eventual commercial space tours.

    More about SpaceShipTwo on PhotoBlog (Virgin Galactic) Back to slideshow navigation
  7. Red lagoon

    The VLT Survey Telescope at the European Southern Observatory's Paranal Observatory in Chile captured this richly detailed new image of the Lagoon Nebula, released on Jan. 22. This giant cloud of gas and dust is creating intensely bright young stars, and is home to young stellar clusters. This image is a tiny part of just one of 11 public surveys of the sky now in progress using ESO telescopes. (ESO/VPHAS team) Back to slideshow navigation
  8. Fire on the mountain

    This image provided by NASA shows a satellite view of smoke from the Colby Fire, taken by the Multi-angle Imaging SpectroRadiometer aboard NASA's Terra spacecraft as it passed over Southern California on Jan. 16. The fire burned more than 1,863 acres and forced the evacuation of 3,700 people. (NASA via AP) Back to slideshow navigation
  9. Where stars are born

    An image captured by NASA's Spitzer Space Telescope shows the Orion Nebula, an immense stellar nursery some 1,500 light-years away. This false-color infrared view, released on Jan. 15, spans about 40 light-years across the region. The brightest portion of the nebula is centered on Orion's young, massive, hot stars, known as the Trapezium Cluster. But Spitzer also can detect stars still in the process of formation, seen here in red hues. (NASA / JPL-Caltech) Back to slideshow navigation
  10. Cygnus takes flight

    Orbital Sciences Corp.'s Antares rocket rises from NASA's Wallops Flight Facility on Wallops Island, Va, on Jan. 9. The rocket sent Orbital's Cygnus cargo capsule on its first official resupply mission to the International Space Station. (Chris Perry / NASA) Back to slideshow navigation
  11. A long, long time ago...

    This long-exposure picture from the Hubble Space Telescope, released Jan. 8, is the deepest image ever made of any cluster of galaxies. The cluster known as Abell 2744 appears in the foreground. It contains several hundred galaxies as they looked 3.5 billion years ago. Abell 2744 acts as a gravitational lens to warp space, brightening and magnifying images of nearly 3,000 distant background galaxies. The more distant galaxies appear as they did more than 12 billion years ago, not long after the Big Bang. (NASA / NASA via AFP - Getty Images) Back to slideshow navigation
  12. Frosty halo

    Sun dogs are bright spots that appear in the sky around the sun when light is refracted through ice crystals in the atmosphere. These sun dogs appeared on Jan. 5 amid brutally cold temperatures along Highway 83, north of Bismarck, N.D. The temperature was about 22 degrees below zero Fahrenheit, with a 50-below-zero wind chill.

    Slideshow: The Year in Space (Brian Peterson / The Bismarck Tribune via AP) Back to slideshow navigation
  1. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  2. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  3. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

  4. Editor's note:
    This image contains graphic content that some viewers may find disturbing.

    Click to view the image, or use the buttons above to navigate away.

Discuss:

Discussion comments

,

Most active discussions

  1. votes comments
  2. votes comments
  3. votes comments
  4. votes comments