IE 11 is not supported. For an optimal experience visit our site on another browser.

Scientists Locate On-Off Thirst Switch in Mouse Brain

By targeting specific neuron groups, the scientists could make the animals drink even if they weren't thirsty.
Image: Mouse
By shining light on a mouse's brain, scientists made the animal want to drink even if it wasn't thirsty.Yuki Oka, Michelle Williamson and Charles Zuker
/ Source: Live Science

You know the feeling: the dryness in the mouth, the stickiness in the throat and the creeping salivation — thirst.

But what causes feelings of thirst in the brain? In a new study, scientists used laser light to activate groups of neurons in the brains of mice. By targeting specific neuron groups, the scientists could make the animals drink even if they weren't thirsty, and stop drinking even if they were thirsty.

Understanding how the brain causes feelings of thirst could help scientists learn what goes awry in disorders that make people drink too much or too little fluid, researchers say. [See video of a mouse's thirst switched on]

Image: Mouse
By shining light on a mouse's brain, scientists made the animal want to drink even if it wasn't thirsty.Yuki Oka, Michelle Williamson and Charles Zuker

"Thirst has attracted a lot of interest because it is such a basic function for all organisms," said Yuki Oka, a neuroscientist currently at the California Institute of Technology and co-author of the study published Monday (Jan. 26) in the journal Nature.

Before this study, scientists knew which brain regions were activated by dehydration and hydration. "But key information was missing as to which were controlling thirst," Oka told Live Science.

In the new study, Oka and a team of colleagues at Columbia University used a technique called optogenetics to pinpoint the origin of thirst impulses in the brains of mice. The researchers injected the mouse brains with a virus that made certain cells sensitive to laser light, and when scientists shone the laser on those cells, it caused them to turn nerve impulses "on" or "off."

The team targeted neurons in a structure called the subfornical organ (SFO), which is known to be active when a mouse is dehydrated. "The SFO is a sort of sensor in the brain," Oka said. The researchers also chose this region because it lies outside the blood-brain barrier, a highly selective membrane that keeps the blood separate from the fluid surrounding the brain and the spinal cord. This made it easier to inject the virus into the neurons to make them sensitive to light.

Previous studies had used small electrical shocks to activate this region, but that method makes it impossible to pinpoint the individual neurons involved in thirst.

Using optogenetics, Oka and his colleagues identified two distinct populations of cells involved in thirst. When the scientists shone the laser on one set of cells, the mice drank voraciously, even if the animals weren't thirsty before. When the researchers shone laser light on the other set of neurons, mice that were thirsty immediately stopped drinking.

— Tanya Lewis, Live Science

This is a condensed version of a report from Live Science. Read the full report. Follow Tanya Lewis on Twitter. Follow Live Science @livescience, Facebook & Google+.