IE 11 is not supported. For an optimal experience visit our site on another browser.

Life and death in the age of the bionic heart

Heart pumps give hope to heart failure patients, but can raise troubling ethical issues.
Image: To match Special Report HEALTH-HEART/PUMP
Dr. Michael Givertz holds a model of the Heartmate II Left Ventricular Assist Device (LVAD) at Brigham and Women's Hospital in Boston.Brian Snyder / Reuters
/ Source: Reuters

In September 2007, Verna Schrombeck gathered three of her six children -- those who could bear it -- to discuss her funeral arrangements. She had been given just months to live and was about to undergo a last-ditch, cutting-edge heart surgery. There was no guarantee she would return home.

Had she organized things well enough, she wondered, so that her eldest son, who was in charge of the estate, would not be burdened? Had she taught her handicapped son, an adult, enough life skills to take care of himself? She asked that the Ave Maria be played at her funeral.

A week later, Verna's sister drove her 8 hours from Lowell, Indiana to Rochester, Minnesota, to the Mayo Clinic, one of the country's best hospitals for heart surgery. Her daughter flew in from Kansas. By the time Verna arrived at the hospital she could barely walk to the admissions desk. "I leaned over the railing, gasping for breath," she said. "I told my daughter, "you have to get me a wheelchair."

Verna, now 78, was suffering from heart failure, a progressive condition that, in its advanced stages, makes walking even a few feet difficult. She had received multiple treatments, including drugs and an implantable heart defibrillator, but nothing was working. In a final Hail Mary, doctors decided to implant an experimental, battery-powered mechanical heart pump known as a left ventricular assist device, or LVAD, into a cavity in her abdomen to assist her heart in pumping.

By the time she returned home, Verna, who received the device as part of a clinical trial, was able to dispense with her oxygen tank and take on household chores. Three years later, she is teaching piano to her five great-grandchildren, cooking meals for her family and driving by herself.

"It has transformed me," she said.

The device, called HeartMate II and made by Thoratec Corp, was approved by U.S. health regulators in 2008 to keep patients alive while they waited for a heart transplant. But in January, it was approved for permanent use in patients who are ineligible for a transplant, expanding the number of potential recipients from a few thousand to tens of thousands, and potentially changing the landscape for the treatment of end-stage heart failure.

Story: Hands-only CPR saves more lives in cardiac arrests

"There has been a ten-fold increase in the use of these devices since they were approved for permanent use," said Dr. Lynne Warner Stevenson, Professor of Medicine at Harvard Medical School and director, Cardiomyopathy and Heart Failure at Brigham and Women's Hospital in Boston. "We are going to know a lot more a year from now but my anticipation is that it will have been the approval of this device in January that will have really set the field in motion."

Living with device indefinitely
To survive, patients must be connected to a lead called a drive-line that runs from the LVAD out through the skin and to a power source. At night the drive-line is plugged into a base unit with a display screen that provides statistical data, which in turn is plugged into a wall socket. By day patients are powered by a set of rechargeable batteries, weighing six or seven pounds, that can be carried around in a bag, holster or vest. The batteries are connected to a controller the size of a paperback book that can be worn on a belt around the waist.

"We like to say I'm bionic," said Geri Norris, 63, a native of Bristol, England who now lives with her husband in Marlborough, Massachusetts.

She is one of the new crop of patients who will live with the device indefinitely. One big drawback, she jokes, is not being able to wear the clothes she likes.

"This is not exactly a fashion statement," she said ruefully, plucking at the light-blue L.L. Bean fishing vest that carries her equipment.

While powered by battery, patients can go about much of their daily lives. But being plugged into the wall at night, albeit with a cord long enough for a trip to the bathroom, takes some getting used to.

"You know how they tether dogs to a clothes line?" said Norris, with a laugh. "That's what it feels like."

Still, LVADs are improving the quality of life for hundreds of patients, including Dick Cheney, the former vice president of the United States and a multiple heart attack survivor. Moreover, the importance of LVAD technology goes beyond its impact on existing patients. It provides a platform for research into stem cell and other therapies designed to regenerate a patient's own heart.

"The Holy Grail is for a sick patient to get a pump, which immediately helps," said Dr. Randall Starling, Head of Heart Failure and Cardiac Transplant Medicine at the Cleveland Clinic. "Then we inject his own stem cells -- maybe in one shot or over the course of a year -- then he improves and his heart recovers, and then he has the pump removed."

LVADs have made regenerative therapy research -- the new science that uses stem cells to generate new organs and tissue -- much easier, since the risk of hurting a patient is minimal. The LVAD carries out the heart's main pumping function, no matter what research is conducted on the patient's own heart. Once the patient undergoes a transplant, the treated native heart, with its cells and its genes, can be examined and studied.

Story: Heart failure patients benefit from own stem cells

"In five years, we will have some fairly substantial number of patients treated and followed for a couple of years," said Dr. Leslie W. Miller, director of the University of South Florida's Cardiovascular Clinical and Research Integrated Strategic Program.

These advances may never materialize, or they could be years down the road. Even so, early data have proved promising and young patients who are scheduled to receive a transplant might consider postponing the procedure, which is irreversible, Miller said.

Crazy robotic heart
Daniel Roth, who just turned 23, is one of the young people faced with such a decision. Since receiving his LVAD a year and a half ago, he has lived an active life. He works in a hospital, exercises and plays in a rock band -- Teamwork. He is determined to get a transplant.

"I could wait five years and hope stem cell therapy will work but by then I'm nearly 30 and I have things I want to do," he said. "I want to be a musician, and go on tour. I would sacrifice some years off the end of my life -- not too many -- for the years left to be as awesome as they can be."

Roth says he has been told transplant patients can expect to live 20 to 25 years, but Dr. Mark Slaughter, professor and chief of the division of thoracic and cardiovascular surgery at the University of Louisville is not so sanguine.

"The survival rate at one year is more than 80 percent," he said, "but after that there is a 4 percent decline every year, so that in 20 years everyone is dead. You have a very finite timeline."

Roth, who lives with his parents in Norwood, Massachusetts, became ill in late 2006 with stomach pains and shortness of breath, while studying marine biology at Roger Williams University in Rhode Island. In January, 2007, he had a stroke. He was diagnosed with an enlarged heart and placed on the list for a transplant.

For the next two years he returned repeatedly to the hospital with symptoms such as vomiting, fluid retention and shortness of breath. A defibrillator was implanted.

"I became very depressed and docile," said Roth, who these days brims with optimism and energy. "Playing in my band took every last ounce of strength."

He struggled on, with medications, but in early 2009 he caught a stomach bug that he could not shake. He returned to the hospital. While there, his heart stopped.

"He coded for about six minutes," said his mother, Ellen, tearfully.

Emergency workers revived him, but by that time he was too ill for transplant surgery.

Even if he had been physically fitter, there is no guarantee a donor heart would have been available. It is estimated that some 50,000 people around the world are candidates for heart transplant, but only 5,000 patients per year get them.

"The only option for me was this crazy robotic heart," he said. It was implanted in April 2009.

"That summer was amazing," he said. "I traveled with my band, I did everything. I didn't realize how sick I was until I got this thing."

Now he is eligible once again for a transplant. And he wants one. He wants to be free of the encumbrances of the LVAD, the endless changing of the batteries, the fear that the wiring might "crap out," that a power outage might hit. He remembers vividly a fourth of July weekend away with friends in Maine. A fuse in the old house they were staying in blew and cut all power. "It was like a bad movie, where the clock starts ticking on your life," he said.

A flurry of calls to doctors and nearby hospitals led him to Maine Medical Center in Portland, which had an extra base unit. But he fears that if he is on tour in a remote part of the country, or overseas, he may not be so lucky.

To get his heart transplant, Roth needs to manage his weight -- one of his biggest challenges -- since one of the criteria for matching a donor heart with a recipient is weight class. A heart donated by a 150-pound woman won't support a 280-pound man.

"I'm doing well now, I've lost 25 pounds, and after the transplant I'll be an angel," he said ebulliently.

An unnatural death
The rise in use of mechanical heart devices represents a dramatic leap forward in the treatment of heart failure. But it also raises some potentially troubling ethical questions: these machines have the capacity to extend life beyond its natural cycle and beyond what might be desirable.

"This is one of the ways our technology has moved ahead of our humanity," said Stevenson. "We haven't had enough experience yet about how to help people die naturally who have a ventricular assist device. And I can tell you, it is difficult to die with one of these things in place. The body does not give up easily when the blood flow is maintained."

Not that patients don't die. Infections are a fairly common cause of death, as are bleeding and stroke. But death may not always come naturally. And decisions must be made about turning the device off.

"We have to address what is the meaning of death on one of these pumps," said Dr. Valluvan Jeevanandam, chief of cardiac and thoracic surgery at the University of Chicago Medical Center and an investigator for Thoratec's clinical trials.

Story: Is living under a flight path bad for the heart?

Roughly 70 percent of patients on the HeartMate II were alive after a year, and nearly 60 percent were alive after two years, according to the latest data.

"It's not hard to imagine a person who has had severe stroke that has impacted both sides of the brain, the kidneys are shutting down, he is on a respirator, but yet the LVAD just keeps churning along," said Martin Smith, a clinical ethicist at the Cleveland Clinic.

Under U.S. law, patients are allowed to ask that implanted devices be turned off. But Dr. Diane Meier, a professor in the department of geriatrics and palliative medicine at the Mount Sinai School of Medicine, said cardiologists are particularly bad at preparing patients for death, especially this kind of death.

"The number of consults that the palliative team gets from cardiologists can be measured on one hand," she said. "We are called upon much more frequently by physicians in other disciplines."