Breaking News Emails

Get breaking news alerts and special reports. The news and stories that matter, delivered weekday mornings.
 / Updated 
By Stephanie Pappas, LiveScience

Pitcher plants that "eat" bat poop have come up with a unique way to attract their meal tickets, new research finds: The plants are shaped to stand out against a bat's echolocation cries.

The pitcher plant Nepenthes hemsleyana grows in the peat forests of Borneo and is a common roost for bats of the species Kerivoula hardwickii. Researchers had previously found that the bats and the pitcher plants have a mutually beneficial relationship: The plants provide a comfy roost with few parasites and an ideal microclimate, and the bats poop in the plants. Bat guano is rich in nitrogen, a crucial plant nutrient.

A bat approaches the pitcher plant Nepenthes hemsleyana in the peat forests of Borneo.Ch'ien C. Lee

The discovery explained how N. hemsleyana can survive, given that its closest carnivorous plant relatives capture seven times as many insects as it does, said Michael Schöner of Ernst-Moritz-Arndt-University of Greifswald in Germany, who co-authored both the study on the mutually beneficial relationship and new research on the plants' alluring shape.

"One-third of the nitrogen which is gained by the pitcher plants is arriving from the bat species," Schöner told Live Science. Another pitcher plant in Borneo, Nepenthes lowii, relies on shrew poop for the same purpose.

The research was detailed Thursday in the journal Current Biology.

During fieldwork, the researchers often had trouble even finding the pitcher plants in the dense forest. They wondered how the bats managed.

"When these bats are flying in this dense vegetation and trying to find the pitchers, they will get echoes from every single leaf that is present," Schöner said.

To test whether the plants were particularly reflective of echoes, the researchers used an artificial bat head and microphone to play echolocation calls at pitcher plants and measure the reflected echoes. Results showed that, indeed, a dish-shaped structure at the opening of the N. hemsleyana plant bounced back the bats' cries.

The researchers also recruited some real bats and let them loose in a tented area with a bundle of dense shrubbery surrounding a pitcher plant. In some cases, they left the pitchers as is; in others, the researchers removed, enlarged or modified the reflective leaf structure. They found that bats preferred to approach enlarged or normal pitcher plants over plants without the reflective structure.

"At the moment, we cannot say for sure that the plants have evolved the structure for the bats," Schöner said — only that the bats use the structure in a mutually beneficial way. It's likely, however, that evolution did drive the development of these sound reflectors, he said.

This is the first time plants have been found to possess a bat-attracting feature for a purpose other than pollination. It's also the first example of a structure like this outside of Central or South America, Schöner said. Unfortunately, the peat forests where these plants and bats coexist are being destroyed by deforestation to clear the way for timber farms and palm oil.

This is a condensed version of an article that appeared on Live Science. Read the original story here. Follow Stephanie Pappas on Twitter and Google+. Follow us @livescience, Facebook & Google+.

MORE FROM LIVE SCIENCE